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Abstract

This dissertation proposes a new control approach, called Predictive Direct Power Control (P-DPC),
where the well-known direct power control is combined with a predictive selection of a voltage-vectors
sequence, obtaining both high trangent dynamic and constant switching frequency. Different P-DPC
versions are developed based on an optimal application of two, three, symmetrical 2+2 and symmetrical
3+3 voltage vectors' sequences. This control agorithm is compared to standard voltage oriented control
(VOC) strategies under two of the most widely employed V Sl-based configurations; the three-phase two-
level VSI and the three-level NPC VSI. Several simulation and experimenta results show that the P-DPC
improves the transent response and keeps the steady-state harmonic spectrum at the same level as the
VOC drategies. Dueto its high trangent capability and its constant-switching behavior, the P-DPC could
become an interesting alternative to standard VOC techniques for grid-connected converters.
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Chapter 1

1. Introduction

1.1. State of the Art

During the last ten years Medium and Low V oltage grids have been interconnected to a large number
of new active systems such as wind turbines, hydraulic generators, biomass and geothermal generators,
photovoltaic systems, fud cells, storage devices, power quality improvement units (FACTS, D-FACTS,
etc.) and others. Almost all of these new ingdlations are interconnected to the grid by means of a Voltage
Source Inverter (VSI) and afilter [1-3]. The three-phase two-level VS| based on PWM has usually been
employed as a robust and highly efficient solution, becoming very popular mainly in Low Voltage (LV)
levels. However, over the last few years, increasingly there has been an interest to develop high-power
multi-level VSIs directly connected to Medium Voltage (MV) gridg[3]. Generally these devices must
provide a target active and/or reactive power level to the line, requiring appropriate Power Control
systems.

The use of high-power electronicsis being extended to different systems related to power generation,
industrial equipments, traction applications etc. Among generation systems, for instance, wind energy
stands out, which has been widdy developed across Europe and in particular in Spain. This expansion is
due to good economic conditions in renewable energies and research efforts carried out in this field.
Therefore, wind turbines are now widely-used energy suppliers offering a cost effective option in the
energy market [4;5]. Thus, variable speed technol ogies based on low/medium power VS| (<600kW) have
been very common in wind farms [6;7]. In fact, the number of wind turbines which compose of a wind
farm tends to decrease but at the same time increasing the rated power in each one of them. Consequently,
there has been an increase of 750kW per unity installed to 3BMW at the end of the nineties, or even to
5MW in the next few years [8;9]. These powers produce a remarkable increase of line currents under low
voltage lines (which typically are connected), raising the ingallation costs and making the design aspects
as size of filters, wires and other system’s devices difficult. Therefore, the wind sector shows a big
interest in the direct connection of these unitsto MV levels for future developments [10].

On the other hand, the liberalization of the eectric market is stimulating new concepts as power
quality which includes the continuous energy supply and wave quality importance [11;12]. The
digtribution and transport grids are usually based on air-lines and are very susceptible to weather
hardness, uncontrollable actions and their inner performance effects. As well as that, the low energy-
quality received by a customer can affect its vulnerable equipment (such as computers, automatic
processes, etc.), leading to considerable economic damage. This problem forces to install new equipments
in order to improve the power quality in the medium and low distribution grids, which are usually based
on high-power VS| controlled by means of Digital Signa Processors (DSP). These devices, so-called
CUSTOM POWER or Digtribution FACTS (D-FACTS), can have different performances as active filters,
reactive energy compensators, protection againg grid voltage dips or interruptions, etc[13-15].

Other sectors such as eectric-based traction and eectric drive indudtries are also supporting high-
power el ectronic-based devel opments. Though these applications present different features compared to
grid-connected systems, alarge number of solutions for high power and medium voltage egquipments have
been developed [1;16-21].
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1.1.1. High Power Electronics for MV Applications

Nowadays, improvements in the new semiconductors such as the increase of tolerable voltage around
some kV, the capability of high currents and fast switching performances allow us to make an efficient
design of VS for MV applications. These improvements are mainly based on new devel opmentsin the
semiconductor’'s features related to thyristors and transistors. Among the new semiconductors it is
possible to find the improved GTO (Hard Driven GTO o GCT), the IEGT, the IGBT and the IGCT are
commercially available. The last two devices are becoming the best options for future medium voltage
and high-power applicationg[1;22;22-26]. The maximum nominal voltage and current ratings of these
devices are shown in Fig. 2.2.
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Fig. 1.1: Maximum nominal voltage and current ratings of available gate controlled power semiconductors|[1]

The different features of IGBTs and IGCTs differentiate them and make each device attractive for a
given family of applications. An interesting study has been carried out in [1], giving a classification of
these devices depending on their operation ranges, see Fig.1.2. Here, the LV-IGBT (Vce<1700V)
modules cover alarge part of the low voltage drives market under line-voltages between 200V and 690V.
The HV-IGBT (Ve < 2500V-6500V) are very competitive for the design aspects of VS| ranging from
few power ratings (200kVA) to several MVA (5-7MVA) between 1kV and 7.7kV line-voltages. The
IGCT clearly dominates the market between 2.3kV and 15kV under high-power ratings (3-100MVA).
Finally, the IGBT Presspack is mainly employed in HVDC transmission systems where a redundant
converter design is the main requirement and each converter’s switch position consists of parallel
connection of several sacks formed by the series connection of many IGBTS.
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Fig.1.2: Operation rangesin IGBTsand IGCTs[1]

1.1.2. Medium Voltage Power Converters

The three-phase two-level VSI configuration is the most habitual topology employed in many
applications because of its simplicity, reliability and robustness. Over a number of years they have
frequently been employed in the wide market of dectrical drives, becoming very popular in the industria
sector. Generally, almost all of the high-power VS units used under medium voltage applications have
been based on thyristors and GTOs [27;28].The main reason is the high voltage and current levels which
allow these kinds of devices. However, the switching frequency is limited to a few hundred Hz, leading to
employ bulky and expensive line filters. As a result there are more and more medium-high power
systems, which have usually been devel oped based on conventional technologies (Thyristors, GTOs, etc.)
that tend to be replaced in order to operate with higher switching frequencies and minimize the cost
related to the filter size[1].

In addition to this, there are many applications which have been connected to medium voltage grid by
means of a VS, such as some variable speed systems (mainly wind and hydraulic generation) and
FACTS devices (active filters, flicker compensators, Dynamic Voltage Restorers etc.). These devices
operate at low voltage levels along with a coupling transformer which allows the connection to medium
voltage levels [2;5;8;13;29]. In fact, they can operate at medium/ high switching frequencies (2-5kHz)
operating under PWM-type modulations. This configuration presents some advantages from the
viewpoint that it is possible to use low voltage devices in such a way that good steady-state and transient
behavior is obtained. In spite of this, the coupling transformer decreases the efficiency of the ingtallation
and usually presents a bulky size. Hence, the trend isto use the new state of the art of semiconductors and
the multilevel topologiesto connect the VSl directly to MV levels [3]. To sum up, the main aim of these
activities is to obtain higher efficiency levels decreasing the size of the grid-filter and/or avoiding the
coupling transformer.
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The new VS| developments for medium voltage applications are mainly based on IGCTs of 4.5kV,
5.5kV and 6.5kV or HV-IGBTs of 3.3kV, 4.5kV and 6.5kV. Thus, it is for example possible to design
two-level-based VSIs suitable for 4.2kV and some few MV As (2-7MVA) using stack topologies (based
on series connection of 3.3kV HV-IGBT) and operating under medium switching frequencies (below 2
kHz) [27;28]. In spite of this, a coupling transformer is still required or a multi-level design mugt be
adopted.

The multi-level structures appear in order to increase the power of VS| by means of adding voltage
levelsin such a way that the voltage in each semiconductor is reduced. Any VSl is considered as a multi-
level converter if the voltage between whichever of the converter’s output phase and any point of the DC-
link has three or more levels. Generally, a larger number of voltage levels applied to a given filter make it
decrease the harmonic range of the current, obtaining a high power quality in the converter’'s AC-side.
The augmentation on voltage levels can be obtained increasing the number of switches, which leads to
complex structures and, as a consequence, makes the control difficult. The features of these topol ogies are
very attractive for many applications, involving the sector of VS| for medium voltage and high-power in
particular. The main multi-level converter’s topologies are: the Neutral Point Clamped (NPC), the
cascaded H-Bridge and the Flying Capacitors (Multicell).

There are several interesting studies comparing these topologies on the basis of some design
requirements as voltage levels, cost, power quality, switching and conduction losses and others [30-36].
However, commercially the three-level NPC-based technology is one of the most utilized. Manufacturers
as ABB, Siemens, Alsom, and AsiRobicon typically offer these kinds of units for electrical drives in
applications such as petrochemical, mining, steel, cement, paper production etc. For instance, ABB
proposes the ACS 1000 and ACS 6000 based on IGCTs for medium voltage levels (2.3-3.3kV) and power
ratings between 0.3kW and 27MW. On the other hand, Siemens offers SIMOVERT ML2 and
SIMOVERT MV using IGCT-based technology for 3.3-6.6kV voltage levels under 4-7.5MW power
ratings. In a similar way, AsiRobicon has developed the SILCOVERT TN and SILCOVERT GN
products based on HV-IGBTs and IGCTs for voltage levels between 2.4-4.2kV under 1.2-20MW power
ratings.

The Multicell technology is less popular because it has been patented by only one manufacturer
(Alstom). The ALSPA VDM product based on IGBT and GTO technologies competes against other
ABB, Siemens and AsiRobicon products under power ratings of 0.5-9MW and between 2.4kV and
6.6kV. Also, the cascaded H-bridge has been developed among others by AsiRobicon under the
PERFECT HARMONY series with LV-IGBT technology. These VSl can be used between 2.3kV and
13.8kV under power ratings from 0.3MW to75MW.

1.1.3. Indirect and Direct Control Strategies

As is wdl-known, grid-connected V SI-based systems are able to control the power flow providing
high efficiency and reliability levels. Generdly, the control techniques which are commonly used could
be classified as direct or indirect control strategies see Fig.1.3. The indirect contral is characterized by a
modulator (Pulse Wide Modulation PWM or other) that computes the turn-on/turn-off times of the
converter’s switches along a switching period through the evaluation of the voltage reference. This
voltage reference is issued by the controller, which idealizes the converter as a dependent continuous
voltage source. On the other hand, direct control techniques establish a direct relation between the
behavior of the controlled variable and the state of the converter’ s switches.
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Fig.1.3: Classification of control techniquesused in grid-connected VSIs

1.1.31. Indirect Power Control Techniques

Though there are many strategies to control the grid-side converters, summarized in Fig.1.3, the
indirect-control type Voltage Oriented Control (VOC) is mainly utilized [37-42]. It is based on the
knowledge of the position of the line-voltage vector and the relative spatia orientation of the current
vector. It employs the well-known Park’s transformation to a rotating dgo reference frame aligned with
the line-voltage or the Clark’ stransformation to a static 50 reference frame, see Fig.1.4.

deg0- rotating reference frame

q
ap0- static reference frame

i = Line current vector

Ty % i b v =2 Line voltage vector

Ref. Coordinates

Fig.1.4: Graphical representation of VOC-based reference coor dinates
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Fig.1.5: Block diagram of VOC in rotating dq r eference frame
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Recent devel opments have popularized the Virtual Flux (VF) concept, which assumes that both the
grid and converter’ slinefilter behave as an AC motor, see Fig.1.7. Thus the resistance and the inductance
of the filter are equivalent to the phase resistance and the leakage inductance of the motor, whereas the
phase voltage of the converter isrelated to afictitious virtual flux [43;44]. One of the main advantages of
this new approach is that it is less sensitive to line-voltage variations than other approaches. The Virtua
Flux Oriented Control (VFOC) is an adaptation of the VOC to a VF reference frame [43-45], see Fig.1.8.

W, IV“ -dt
Fy = =
! ’ li l/’ﬂ Ivﬁ - dt
----}s

i 9 Line current vector

v 2 Line voltage vector
¥ 2> Virtual line flux vector

Ref. Coordinates

Fig.1.7: Graphical representation of VF-based reference coordinates

Indirect control strategies generadly lead to good transient behavior and acceptable steady-state
operation. They operate at a constant switching frequency, which makes the use of advanced modulation
techniques possible. Therefore, it becomes easier to optimize conversion power losses or to smplify the

line-sidefilter design.

Otherwise, these control techniques have some disadvantages. The main problem is common in any
indirect control strategy under a PWM-type modulation: if the ratio between switching and grid-
fundamental frequencies is not large enough, the VS| can not be considered as an idea controlled
continuous voltage source. In these conditions, it becomes impossible to use the notion of the converter’s

average voltage vector in control reguirements.
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DC/AC
Converter

[ Vi L Va
Vic L H
v ey oy,
Voc re i i S: %? Sc? Virtual Flux
QL ' s PWM Estimation
1 3
M odul ator .
i ig Pl l l Hio lka [ kg
i : ; vﬁbc—rd Inverse of vy
: i 8 0C, | randonmion 0| |8

Fig.1.8: Block diagram of VFOC

1.1.3.2.  Direct Power Control Techniques

Direct Power Control (DPC) is one of the most popular direct control strategies of grid-connected
converters [43;44;46-49]. This technique is derived from the first and original Direct Torque Control
(DTC) of AC machines. In each sampling time it evaluates which one of the insantaneous voltage vectors
(available at the output of the converter) is best suited in order to push the state of the system towards the
reference value. As this evaluation is continuoudy carried out, direct control technique does not require
any modulator and it is able to get the maximum dynamic capability available in the system. Moreover, it
does not require any interna control loop or any coordinate transformation, avoiding coupling effects
between transformed variables. In the DPC case, instantaneous active and reactive power control 1oops
are based on hysteresis regulators that select the appropriate voltage vector from a look-up table, see
Fig.1.9.

DCIAC
Converter
Vi L i
_ka_rYLY\__ka_>_=__. Va
Mo~y glhy 1 oy,
L . b
Ve rr\(\_I ke o oV
i * Ve
Sdl §o| S | T A4
Look up H Power
1 Caculation / Estimation
Table !
T W 4. ! p q
| Ulet bk
AN
" Grid Voltage :
Sector Select 1
1
i
1
1

Fig.1.9: Block diagram of DPC
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The DPC technique has also been implanted under the VF concept, leading to the Virtual Flux Direct
Power Control (VF-DPC)[43;44], see Fig.1.10.

DC/AC
Converter L i
Via MY_lkay v,
s Vi L i
< i
X Ve

1
1
1
i
]
1%
o
E2]
1
1

" Grid Voltage
Sector Select

L : _
H <1 Look up 1 Virtual Flux
1 it H Estimator
3 8 | Table ! &Vk,li iyjkﬂukaﬁ oA
1 1 1 H
: % CUR— W - E i : O, Y
i 5] ‘ 1 ‘ Estimator
]

el
?‘F‘
| R
Power Regulation

Fig.1.10: Block diagram of VF-DPC

The main disadvantage of the DPC strategy is the resulting variable switching frequency, which is
usually not bounded and depends mainly on the sampling time, look-up table structure, load parameters
and the dtate of the system. As a result, these kinds of controls generate a dispersed harmonic spectrum,
making it difficult to design the line-filter in order to avoid possible grid resonances [50]. The mixed
DPC-SVM approach is an adaptation of VFOC and VF-DPC techniques which provide the required
converter’s average voltage, also applied to the Space Vector Modulation (SVM) [51-56]. This strategy
could be defined asadirect control method based on the fact that the converter’ s average voltage vector is
directly computed using active and reactive power tracking requirements, see Fig.1.11. Nevertheless, in
the frame of this thesis and taking into consideration that it uses a modulator, it should be classified as an
indirect control strategy.

DC/IAC
Converter
[ Via A ke v,
VDC .
— J@‘ FREAN (R

c) e shebt
SVM

A

Inverse Pow
Park's &

Transformation
abc

A

Power Regulation

Fig.1.11: Block diagram of DPC-SVM
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Predictive approaches have al so been employed in order to overcome the variable switching frequency
problem of the DPC strategy. These solutions have been mainly employed in the control of AC machines
[57-61]. Instead of sdecting an instantaneous optimal voltage vector (DTC-case), predictive type
approaches select an optimal set of concatenated voltage vectors, the so-called “voltage-vectors
sequence’. The control problem is solved computing the application times of the vectors of the sequence
in such away that the controlled variables converge towards the reference values along a fixed predefined
switching period. This way constant switching frequency operation is obtained. Several authors have
developed this concept in multilevel converter topologies linked to different kind of machines but there
are few predictive control applications on line-connected VS| systems. Some authors propose predictive
current control algorithms related to power control requirements but it results in variable switching
frequency [62;63].

Some interesting work has been carried out related to line-current control where a diding-control type

approach is combined with predictive computing of voltage application times [64]. This way both high
transient dynamics and congtant switching frequency are obtained.

1.2. Scientific Contribution

The aim of this dissertation isto research and develop a new control approach for grid-connected VSI
where DPC is combined with predictive vector sequence sel ection, obtaining both high transient dynamic
and constant switching frequency. Therefore the following thesis can be formulated:

“A predictive control strategy for DC/AC convertersbased on Direct Power Control allows high
transient dynamic under low switching frequency constraints for medium voltage grid-connected
VS, becoming an interesting alter native to VOC techniques.”

In order to prove this thesis, the author has used analytical and simulation-based approaches, as well
as experimental tests of a grid-connected two-level and three-level NPC VSl. In the author’s opinion the
original scientific contributions of this dissertation are;

Definition of the theory of a new predictive algorithm based on Direct Power Contral, the
Predictive-Direct Power Control (P-DPC)

Development of different versions of P-DPC: P-DPC based on two, three, symmetrical 2+2
and symmetrical 3+3 voltage vectors' sequences

Simulation and experimental application to atwo-level VS

Simulation and experimental application to athree-level NPC VS

Analysis of the overall operation performance againg typical disturbances on the grid
Analysis of the overall robustness againgt variations on the parameters of the grid-filter's

Other results that may not be original contributions, but are believed to be important technological
developments or to have a sgnificant practical value, are:

Modelling of the dynamics of the instantaneous active and reactive powers of three-phase N-
level VS| under rotating dg and static o reference frames.
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Development of L-type filter design considerations based on low and high frequency
requirements.

Definition of the design procedure of controllers for power-control tasks usng VOC and
DPC dirategies.

1.3. Thesis Outline

Thisthesisis divided into seven chapters which are summarized as follows:
Chapter 1. Introduction

This chapter describes the frame of this dissertation and formulates the problem which is discussed in
this manuscript.

Chapter 2. Analysis and Design Considerations of 2L-VSl and 3L-NPC VSI for MV Grid-
connected Power Applications

Chapter 2 describes the fundamental operation performances of the 2L-VSlI and 3L-NPC VSI.
Mathematical models and some design considerations are presented, extending these ideas in order to
select the passive e ectric components for 2.3kV-2MVA operation conditions.

Chapter 3. Power Control Strategiesfor Grid-connected VSI-based Systems

Chapter 3 is focuses on two of the most interesting power control strategies for grid-connected VSI-
based systems, the VOC and the DPC. In fact, some design considerations are defined for both control
methods under 2L-VSI and 3L-NPC VSl configurations, showing the main features and requirements
under the MV grid-connection operation condition.

Chapter 4. Predictive Direct Power Control

This Chapter defines the theory of a new predictive control approach based on the DPC, called
Predictive Direct Power Control. Furthermore, different P-DPC versions are proposed, applying these
concepts under the 2L-VS| and 3L-NPC VS configurations. Some simulations of these strategies under
2.3kV-2MWA grid-connected operation conditions have been carried out.

Chapter 5. Control Operation Performance

This Chapter discusses the control operation performance of the most interesting control strategies for
MYV grid-connected applications. The behavior of these control strategies against parameter’ s uncertainty
on line-disturbances is compared.

Chapter 6. Simulation and Experimental Results

Chapter 6 shows the simulation and experimental results which have been carried out in order to
verify the proposed algorithms.
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Chapter 7. Conclusions
Finally, this Chapter presents a brief summary containing the conclusion and proposing the future
work related to this dissertation.

Appendix
Thiswork is supplemented by the following appendices:

A.1. Coordinate transformations
A.2. Harmonic Limitation






Chapter 2

2.Analysis and Design Considerations of 2L-VS|
and 3L-NPC VS for MV Grid-Connected Power
Applications

2.1. Introduction

The development of new kinds of high-power, medium voltage (MV) and fast switching
semiconductors (as Integrated Gate Commutated Thyristors (IGCTs), High Voltage IGBTs (HV-IGBTS)
etc.) combined with the utilization of Digital Signal Processors (DSPs) has stimulated direct MV
connection of power converters in a large number of applications (wind turbines, hydraulic generators,
biomass and geothermal generators, fuel cells, storage devices, FACTS, and others)[1;16;17;21]. Today,
thetwo-level VS (2L-V Sl) and the three-level Neutra Point Clamped VSI (3L —-NPC V Sl) are two of the
most widely used high power topologies [20].

In this chapter some principles of operation of grid-connected converters are discussed. Also,
mathematica models and some design considerations of 2L-VSI and 3L NPC-VSI are shown, leading a
generalized development of N-level NPC VSI. In addition, usually employed vector-based modulation
techniques are described in order to take into consideration their influence in a grid-connected VSI
configuration. Finally, these ideas are extended to design the passive eectric components of 2L-V S| and
3L-NPC VS topologies under 2.3kV-2MV A operation conditions.

2.2. Grid-connected Power Converters

Let us consider a generic per-phase line-connected VSI configuration asin Fig. 2.1. Where v shows a
single-phase of symmetric three-phase voltages and represents the point of connection to the grid. The
VSl is connected by means of a grid filter in order to reduce the current i harmonics and to fulfill the grid-
connection standards. This device must provide atarget active and/or reactive power level to theline, soit
is able to control the phase and amplitude of the converter’s AC-side both voltage vy and current iy.

DC-Side AC-Side

£

DC/AC

—_—  —

[ Grid T\
k ‘ Filter TGD

Fig. 2.1: Single-phase model of aline-connected VS|
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Fig. 2.2 shows several examples of phasor diagrams (unity-power-factor and non unity-power-factor)
of a VSl both when the power flows from the DC-side to AC-side (Inverter mode) and power flows from
the AC-side to DC-side (Rectifier mode).

I nverter mode Rectifier mode

Vi
AVL v
. e I > V

a)

Fig. 2.2: Phasor diagrams:. a,b) unity-power-factor operation. c,d) non unity-power-factor operation

There are many configurations for grid-connection based on different topologies of VSI which have
been shown in Chapter 1. However, in the scope of thisthesis 2L-VSl and 3L-NPC VS| topologies with
an L-type grid filter will be considered.

2.2.1. 2L-VSI Configuration

The basic scheme of a grid-connected 2L-V S| with an L-type filter is shown in Fig. 2.3. The structure
of the converter consists of six switching cells (based on IGBTSs, IGCTs, GTOs, or others) in such a way
that eight possible configurations of the switches are available, leading to seven possible voltage states at
the output of the converter. Fig. 2.4 shows the available configurations of one switching leg of the
converter. The output is connected to the negative (-) or positive (+) point of the DC-link when the state
of the switch Syisequal to ‘0’ or ‘1, establishing a current way between the DC-side and AC-side.

_;Saj s &jlﬁ}

] ] ]
] ]
| DC-Side 2L-VS : AC-Side ]
L —p " : E
' ipe 1 1 Grid
] ] ] r ]
| SRS S R :
: : i L <= '
1 1 Vkal Va 1
1 1 a 1 ‘ 1
, i b Vi ! '
] —_— " f
BN o s
1 1 n
] 1
1 1
] ]
] ]
] ]
1 ]
' :

Fig. 2.3: Grid-connection of athree-phase 2L-VS| with a L-typefilter
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+ +
A s, 4 S
- | Vbc Via=(-) —+— Vbc Via= (-)
T T
1,<0
S }S i>0 S }
a) > b)
= > R 2
A Sa } A Sa }S
-4 | voc ! Vkaz‘("') L | Vvbc Via= (+)
_ » - ——
S ? i>0 S, } i.<0
0 d L

Fig. 2.4: Available switching statesin the a-phase converter’sleg —2L-VSl: a) Sa=0ia>0, b) Sa=0ia<0, ¢) Sa=1
ia>0, d) Sa=lia<0

Equation (2.1) computes the available voltage vectors in the complex space. Six of them are classified
as active vectors (the combination of the converter’s switches leads to a non-zero voltage in the AC-side)
whereas the other two vectors are null vectors (all phases are connected to the same point). The graphical
representation is shown in Fig. 2.5.

Fig. 2.5: Space vector representation of different voltage vectors available at the converter’sAC-sidein a2L-
VSI.
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2.

Therefore, and assuming that the grid of Fig. 2.3 is a balanced three-phase power system, the
following converter’s per-phase equations related to the neutral point (n) of grid can be derived.

ka

Vie =

ke

25,- (5,+5),

3 DC
25 (505),, .,
25- (5,+5),

3 DC

Equation (2.3) shows the per-phase dynamic behavior of the proposed power system, with v the
converter’ s voltage, v theline-voltage and i the line-current vectors.

Vv, :Ri+L%+v

(2.3)

Also, the behavior of the DC-link voltage can be expressed based on the converter’s switching pattern
and AC-side currents. Then, it is possible to present the model of the system in the three-phase

coordinates abc as follows;

idi, R,
ot L
idi, R,
fae " L"
id._ R
: dt L®
T~ Voo _
j Coc d?c_

Ly e @50 (S+8)6

L* L& 3 7]
- lv +Vﬁﬁso- (Sa+Sc)9

L® L& 3 2 o4
- iv +V£¢ﬁ50- (So+Sa)9

L L& 3 7]

(Saia + Solb + Scic)+iDC

In many applications it is useful to present the system modd in static ef or rotating dq reference
frame, using the well-known Park’s or Clark’s transformations (Appendix). Equations (2.5) and (2.6) show
the system behavior under the af and dq coordinates.

i di, R. 1 Ve

n—2 = - Ty +-BCf

: dt L* L* L ¢

jdi, R, 1 vy

[—=-—i, - —v, +—=>=1, (25)
i dt N L L L

) 37/, . . .

%CDC dlic :-E(fa|a+fb|b)+|DC
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idi, _ R.
g e e
-
jdi, _ R . . 1 v,
[ — =- —j +Wi - —Vv, +-2Cf (26)
T R TR T
i dv, . ).
ICDC%:-(ded-qulq)-'-ch
I
Where the appropriate switching states are expressed as.
_25-(8,+8)
2 3
1
fo=7(S- )

With
f, = f, cos(wt) + f, sin(wt)

f, = f, cos(wt) - f, sin(wt)

2.2.2. 3L-NPC VSI Configuration

Fig.2.6 shows the scheme of a grid-connected 3L-NPC VSl with an L-type filter. The converter
consists of twelve switching cells and six clamp diodes, leading twenty seven non-destructive different
combinations of the states of the switches. Any given output phases of the converter can be connected to
negative (Sy=0, Sp=0), neutral (S4=0, Sp=1) or positive (Sy=1, Sp=1) points of the DC-link, which
results in different current paths between the DC-side and AC-side. The allowed switching states are
showed in Fig.2.7.

DC-Side 3L-NPC VS AC-Side
oo | T
Vbc A Saﬂ Soﬂ S:ﬂ
Vbc1
8 St T R B

sk Tk e

T CD C2

0 ! a i

Fig.2.6: Grid-connection of athree-phase 3L-NPC VS| with a L-typefilter
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Fig.2.7: Available switching satesin the a-phase converter’sleg —3L-NPC VSI: a) [S;1=0, S;,=0] i:>0, b)
[Sxa=0, S2=0] ia<0, €) [Sx=0, S:2=1] i5>0, d) [Su=0, S2=1] a<0, €) [Su=1, So=1] i>0, f) [Su=1, S:2=1] 1a<0

¥
9y

(Lol Lo Lo A RS i g
'




Grid-connected Power Converters 19

The twenty-seven switching states of the 3L-NPC VS| generate nineteen different voltage vectors at
the converter’s AC-side (eighteen active vectors and one null vector). The availability of redundanciesin
different states provides extra degrees of freedom. Equation (2.7) computes the vector representation in the
complex space where the sub-index |,ms are related to large, medium and small vectors .The graphical
representation is shown in Fig.2.8.

o2 il
TVin 1 = §VDCe
i
T 1 jn%
1V, =—V,-.€

|l knm - [3 °PC n=1..6 27
|

| 21 j(n-12
T an s EVDCe
1 _

1 Vio = Via = Vkz 0

s A
() O (++)
Via | V@im Vie |

Vlem Vklim

(_Y_'_Y C (+v0v')

Via | Vi |
(g o
.‘."- :..‘. a
.Vk6 m

V !

kd_m (+-0)

(-.0+)

Vk'57I Vis m Vke;l
(%) (0-4) (+-%)

Fig.2.8: Space vector representation of different voltage vector savailable at the converter’s AC-sidein a 3L-
NPC VSI.

Assuming that the system shown in Fig.2.6 is a balanced three-phase power system, the following
converter’s per-phase equationsrelated to the neutral point (n) of the grid can be derived.

— 2831 - (Sol + Scl)v + 2Saz - (Soz + Scz)
3

Via = 3 DC1 Voc2
2S5, - + 2S, - +
v, = 25 (ial Suly 425 (zaz Sa),, .
— 28(:1 B (Sal + Sol)v + 28(:2 B (Saz + Soz)v
ke 3 DC1 3 DC2

The line current behavior is defined in the same way as (2.3), whereas the DC-link voltage behavior
must be related to each DC-link capacitor. Thus, the system mathematical model in the three-phase
coordinates abc is defined as follows:



Analysis and Design of 2L-VS| and 3L-NPC VSl for MV Grid-Connected Application

F-%:-Ei _lv +VDC1??Sa1- (Sol+s) DCZ??SaZ (Soz+S )9
.:.dt L® L® L& 3 ;aLe 3 2
Ty o Ry 1, Voo 825 - (S +Su)O, Voo @S- (S * S)
bdt L LY L 3 g L é 3 g
fdic _ Ry 1, Voo @S- (Su* Sn)9, Voo @5~ (S +50)0 )
; dt L°L° L & 3 g L é 3 2
:
i CDCl (Salla + Sl + Syl )
I
i dv .
i Coc2 CI;,[CZ :-(Sa2|a+sozlb+scz ”c) Ioc
1
The system representation in static eff coordinates can be carried out as:
i di, R. 1 V, V,
P e CLf, +-DC2 f,
Idl_b:_Eib 1V +VDC1f +VDC2f
I
idt de ; L (2.10)
-:-Coc1 d?[l 2(f i+ iy ) +ip
:
. dv, 3 .
%Cocz CI;,[CZ =- (fZaIa + 1 b)+|DC
Where the switching functions are:
f - (Sol+S )
" 3
1
fin :ﬁ(sol Scl)
f2 — 2Saz' (Soz+Sc2)
a
3
\/_(SDZ 02)
On the other hand, the system can be represented in the following static dq reference frame.
:% =- %id - Wi, - 1vq +VD—LCl fla +VD—LC2 foq
[
I%:-B| +WicI iv +V_ Voc2 )
q q
P dt L L (2.11)
dVDCl —

DC1 dt (fld|d+flq|q) IDc

dv
DCZ% =- (fzdld + f2q|q) +ipe

—_) o — — —
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With

f,g = T, cos(wt) + f,, sin(wt)
f, = fi, cos(wt) - f, sin(wt)
f,q = T, cOS(Wt) + f,, sin(wt)
fq = fy COS(WE) - f,, sin(wt)

2.2.3. N-Level-NPC VS| Configuration

It is possible to develop a generalized modd of N-level-NPC VSI. Fig.2.9 shows an example of a
converter's leg where N* possible switching states can be generated. Considering a balanced grid,
converter’s per-phase equationsrelated to the neutral point are derived in (2.12).

i?IC:(:TCDcJ_ ]
f} ]
|
i
|
Vbal-1 C°°"J— ]
Vbal %DCI i =
Tl o

N
el T ﬁ}
N R

VDCN-1
_|_

Fig.2.9: One-phaserepresentation of N-Level-NPC VS|
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Vka -

Vie =

ch -

— ’\glzsal B (SDI + Scl)
a. VDCI
=1 3
'\‘l’-lzsu - (Sal +Sd)
a Voa
=1 3

_'$12S, - (Sal +So|)
a. DCI
=1 3

(2.12)

Using (2.3), the system analytical model in the three-phase coordinates abc can be defined as follows:

id, _ R 1, 1%25,-(5,+S,)
| dt L a L a L 3 DCl
‘I' 1=1
idy R 1, ,1%'25-(S,+8),
pdt LT L LT 3 ba
idi, ~ R 1. 1%'25-(S,+S,)
v C = v += cl al
Pae ~ Lo LeTLd 3 e
! v
: CDc1 d'[ (Salla +Sol| +Scl| ) (213
: dv
i Coco CI;,[CZ ( a2la  Shal +Sc2'c)
I
i
:
i
i dv, . . Y
%CDCN—l Z(;N_l =- (SaN—l|a+SoN—llb +ScN—1|c)+IDC
The system representation in af and dg reference frames can be expressed as (2.14) and (2.15)
respectively:
.‘I.dia —_Ei _lv +1§1V f
: dt L a L a L - DCl 'la
| Iy Ri 1V +1'\§'1V f
— = - —i, - — =
.I. dt L b L b L 7 DCI "Ib
I dv 3
i Cocy d?[c =- E(f I, +f1b'b) (2.14)
:
. dv
: CDCZ C;:CZ =- (fzala + f2b b)+|DC
:
: N ,
T 1 _ . . .
JfCDCN—l IZ;,;N : E( N-1ala + fN-lbIb)+IDC
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by Ry 1 1B

: dt L d q L q L - DCl "N-1d
I%—Bl +Wi -lv +£N§lv f

: dt L q d L q L|:l DCl "N-1q
I dv . AT

%CDCl dI?[Cl =- (fldld + flqlq)+|DC (2.15)
i

: CDCZ ;tcz =- (fzdld + fquq)+|Dc

i

i N

1 1 . . .
"CDCN—l el = - (fN—ldI + fN-1qI )+IDC
f dt

Where the appropriate switching states are:
f = ZSaI - (Sol +Scl)
3

la —

wherel =1..N-1
fq = f, cos(wt) + f, sin(wt)

f,, = f, cosiwt) - f,, sin(wt)
whith | =1..N - 1.

2.3. Space Vector Modulation

The switching-control signal (turn-on/turn-off) of modern power eectronics converters are usualy
generated by Pulse Wide Modulation (PWM) techniques, which have become the basis of energy
processing. Among the available PWM techniques, the space vector modulation has become very popul ar
in many applications due to its simplicity. It is based on the spatial projection of the voltages of the three
phases of the converter which results in a simple geometrical system’s description and facilitates the
analysis of the switching operation. This way, different kinds of vector-based modulations have been
designed for specific performances[30;32;43;65-67;67;68;68-73]. In this dissertation the most popular
vector-based modulators for MV operation conditions have been assumed. Thus, the main characterigtics,
operation range and some switching frequency performance criteria have been discussed.

231 Space Vector — Pulse Wide Modulation (SV-PWM)

The SV-PWM is the most extended modulation technique utilized in three-phase two-level VSls. It
employs the space vector representation of the converter's voltages in order to generate a reference
average voltage vector . inthe AC-side. The space vector a-f surface is divided in six sectors of 60°

[61.. B¢], see Fig.2.10. The required average voltage vector is obtained using the combination of the two
nearest active vectors along with two null vectors. The voltage vectors sequence must be chosen in such
away that only one leg of VSI can switch between two consecutive vectors. Fig.2.11 shows, for example,
the voltage application sequences which can be employed in the first sector.
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Fig.2.10: Set of available voltage-vectors on athree phase converter and mapping of the segmentsrelated to
the line-voltage vector location under a SV-PWM

AP , Vio iViaVie Via :Vw Vie i Via i Vio
Nie 011 171 1:.1]0
: " }
01 0 01 171 1|0 0
: X, !
Y 0 0 0/1;1]0 0 0
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2 t0/2t0/2 th i g §t0/2
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o
~
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—

flry
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Vio= Vk7 Vi1 o <
a) b)

Fig.2.11: Voltage vectors sequence availablein the first sector for SV-PWM: a) Graphical representation, b)
Vectors application along a control period Ty

Taw

As can be observed in Fig.2.11b, these vectors are applied in a symmetrical way in order to improve
the steady-state operation using the minimum number of commutations. The application times are
computed as follows.

r. T r r r
Vi ?GN = Vialy + Vil + Vil (2.16)
Where
2
Via = §VDC
r 2 @& 30
Vie = 3Vocg, Y15 T 2.17)
(4]
r —
Vo =

Y =N;|(cosd + jsind)
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Having solved the equations concerned, the following times are obtained.

3 r. .
t, =———|v. [T, Sin(60°-d
= gy sinlor-)

3 r. .
t,=— v, T4, Sinld (2.18)
2 2VDC\/§ k|"sSw ()

T.

t(,:%N-tl-t2

If the line-voltage vector isin other sector, the control first trand ates the involved variables to the first
sector, and then the same set of equations used for sector one can be exploited.

From these equations it is possible to deduce that the voltage vector will be maximum when t,=0,
operating across the hexagon showed in Fig.2.10. Therefore, the reference average voltage vector is
usually limited in the module to 3, which can be represented graphicaly as a circle inside the

hexagon. The operation range of this kind of modulator offers the following converter’s maximum linear
line voltagerating

Yianrus) - g 703 19
VDC

In order to evaluate the switching frequency related to modulation techniques two performance
criteria have been defined. The firg one is the apparent switching frequency, i.e., the average switching
frequency observed by the grid fas,. In this case, the SV-PWM is based on a symmetrical four voltage-
vectors sequence which implies two commutations per leg within a control period, see Fig.2.11b.
Therefore, the apparent switching frequency can be computed (equation (2.20)) taking into account the
total number of commutations (Nsy=6), the number of phases (N-=3) and the symmetrical switching
pattern consequence (Ssy=2). On the other hand, equation (2.21) shows maximum switching frequency
which can be carried out by converter’s switches fywax. AS can be derived, the average and maximum

frequency will be the same when the SV-PWM technique is employed.

foz Ngy _ 1
e NeSovTaw  Taw

(2.20)
1

fomax = fou = T_ (2.21)
SW

2.3.2. Minimum Loss Vector — Pulse Wide Modulation (MLV-PWM)

The MLV-PWM or also so-called Discontinuous PWM was proposed in [74] and has been widdy
developed in literature by many authors [65;75;76]. In comparison with the SV-PWM, one of the three
legs does not commute during the switching period, leading to a reduction of 33% on the converter's
switching frequency. There are several kinds of MLV-PWMs and switching losses can be improved up to
50% becoming very interesting solutions to high power equipments. However, these reductions strongly
depend on the power factor of the load and modulator design considerations. In this case, the line-voltage
plane is divided in six sectors of 60° [0;.. 0], which are also divided in two subsectors, [0ia.. 0i5], See
Fig.2.12. The reference average voltage vector v, is obtained using the combination of two nearest active
vectors and one null vector. Similarly to the previous modulation strategy, two symmetrical voltage
vectors sequences must be chosen. Fig.2.13 shows an example of space plane division and the voltage
vectors' application sequence for thefirst sector.
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Fig.2.12: Set of available voltage-vectors on athree phase converter and mapping of the segmentsrelated to
the line-voltage vector location under aMLV-PWM
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Fig.2.13: Voltage vectors sequence availablein thefirst sector under B sub-sector for MLV-PWM: a)
Graphical representation, b) Vectorsapplication along a control period Ty

The voltage vectors seguence is applied in a symmetrical way and the application times can be
obtained using the same principle showed in 2.3.1. Therefore, equation (2.18) is also valid under MLV-
PWM and the average vector islimited to , /3 in module. Furthermore, the maximum operation range

of this kind of modulator is equal to equation (2.19). However, the MLV-PWM is based on four
commutations per control period and the apparent switching frequency can be derived in equation (2.22),
whereas the maximum switching frequency will correspond with the control frequency.
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Fo= Negw _ 2
e NeSovTar  STaw

(2.22)

fomax = fou (2.23)

1
TSN

2.3.3. Nearest Three Vector — Space Vector Modulation (NTV-SVM)

The NTV-SVM is a widdy employed vector-based modulation in multilevel
converterq 30;32;70;72;77,;78]. This strategy combines the nearest two active vectors and one null vector
in such away that it generates the required voltage and keeps the voltage balance in DC-link capacitors.
The space vector plane is divided in different sectors and regions where the combination of sdected
voltage vectors are the best to minimize the number of commutations, improve the power quality and
minimize the generated e ectromagnetic interferences (EMIs). Fig.2.14 shows an example of the division
of the line-voltage plane for a three-level NPC converter under six sectors of 60° [0;.. 6g], which are also
divided in four regions [Ri1.. Ri4], see Fig.2.15. The reference average voltage vector n'k* is generated

taking into account the sector and region, employing different combinations of large vectors \'/ki |
medium vectors v, _, small vectors v, . and null vectors, {v,,,Vv,,V,,} [32,70,72;79-81]. Table 2.1

shows, for example, the voltage vectors sequences which can be derived for the first sector fulfilling the
DC-link capacitor’ s voltage balance requirements [79].

—
Os

Fig.2.14: Set of available voltage-vectors on athree-level NPC converter and mapping of the segmentsrelated
totheline-voltage vector location under aNTV-SVM
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Fig.2.15: Graphical representation of voltage vectors sequence availablein thefirst sector for NTV-SVM

TABLE 2.1
SET OF AVAILABLE VOLTAGE VECTORS SEQUENCES FOR THE FIRST SECTOR
REGION DC-link capacitors' voltage balance Voltage vectors sequence
requirementsrelated toline current
L (Vocz >Vou)A [ <0) oG o)
(VDCZ > VD01)A (i < 0) (10300
2 (VDCZ > VDCl)A (I < 0 (VDCZ > VDCl)A (Ic < 0) (0’-’-)-(0’0’-)-“’0’-)
(VDCZ > VDCl)A (ia < 0) (VDCZ > VDCl)A (Ic < 0) (0’-’-)-(+’0’-)-(+’+’0)
(VDCZ > VDCl)A (ia < 0) (VDCZ > VDCl)A (ic < 0) (00)-(+0)-(+0.0)
(VDCZ > VDCl)A (ia < 0) + (VDCZ > VDCl)A (Ic < 0) (+’0’-)-(+’0’0)-(+’+’0)
3 (VDcz > VDCl)A (' < 0) (0090t +)
(Vocz > Vou A (. <0) CoTC e
4 (Vocz > Voc:) A (i, <0)+ (Voc, > Voe)A (i <0) 000
(VDCZ > VDCl)A (ia < 0) (VDCZ > VDCl)A (Ic < 0) (0’-’-)-(0’0’0)-(+’+’0)
(VDCZ > VDCl)A (ia < 0) (VDCZ > VDCl)A (ic < 0) (00.)-(00.0-(+00)
(VDCZ > VDCl)A (ia < 0) + (VDCZ > VDCl)A (Ic < 0) (+’0’0)-(+’+’0)-(+’+’+)

(+,+,0)-(+,0,0)-(0,0,0)

In the same way as previous modulators, the voltage vectors sequence is applied in a symmetrical
way and application times can be obtained extending the method shown in 2.3.1 to a multi-region concept
[70;79]. The maximum module of the average vector is limited in module to , , 3, dlowing an

operation range described by equation (2.19). Furthermore, NTV-SVM is based on four conmutations per
control period in such away that the apparent switching frequency and the maximum switching frequency
per semiconductor will be similar to those of the MLV-PWM dtrategy ((2.22) and (2.23)). However, it is
necessary to emphasize that in a three level NPC converter the average frequency in each semiconductor
within a semi-leg is different and mainly depends on the converter’ s operation point.




Design Considerations of Passive Components 29

2.4. Design Considerations of Passive Components

The passive components have a strong effect on the size, efficiency and cost of VSI-based systems.
This is the reason why they represent an interesting topic for designers and manufacturers. In literature
there are many studies that discuss different methods of design [8;82-88].This section summarizes the
main considerations to design the grid filter and the DC link capacitor in order to optimize a MV grid-
connected ingallation.

The basic specifications and conditions of an MV converter example are shown in Table 2.2. The
power rating and the line-to-line voltage are close to the commercia available MV units [1;17;20;21;21].
In the following analysis, it is assumed that the equipment operates as an inverter of the main source
which supplies 2MW. The system is connected to a 2.3kV grid by means of an inductive filter. Both the
Minimum Loss Vector and Nearest Three Vector SVM techniques are employed for 2L-VSl and 3L-
NPC VS| respectively.

TABLE 2.2
SPECIFICATIONS OF GRID-CONNECTED MV VS| EXAMPLE
Value [unit]

Rated Power (Sy) 2[MVA] cosg=0.9(i)
Fundamental frequency (fo) 50Hz
Rated line-to-line Voltage (RM S) 2.3[kV]
Grid Filter L-type
Topology 2L-VSl 3L-NPC VS
M odulation (MLV-PWM) (NTV-PWM)

24.1. Grid Filter Design

As is wdl-known, the grid filter’s reduces the current harmonics injected to the grid. The design of
this device can be carried out in different ways; considering the voltage drop in the inductor, analysing
the current ripple in high frequencies, identifying the harmonic spectrum generated by the converter and
others [82;83;89;90]. Generally, thefirst and second methods are considered and the designer must find a
good trade-off solution between them. The third technique could become an interesting method because it
uses mathematical approaches of converter's voltage waveform spectra, showing a clear relation of
harmonic components in front of the grid-connection standards. However, the resulting analytical
expressions are not very friendly (they depend both on modulation technique and converter’s topology)
and usually simulation-based designs are utilized [13;68;91].

In this case an approach based on low and high frequency analyses has been developed. Thus, low
frequency anaysis will define the maximum inductor value (Luax) taking into account the voltage drop at
fundamental frequency. On the other hand, high frequency analysis will define the minimum inductor
value (Lwn) taking into account current ripple values. The final value of the inductor will be sdlected
between Luax and Ly n oObserving which of them reflects the most important criteria. Other second
criteria of design and final construction could be:

Maximum current
Tolerance
Power lossesin the filter resistance (defines the inductor-wind' s section and material)
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Losses in the magnetic core (defines core's material)
dV/dt during switching (defines inductor-wind'’ s insul ation)

Let us consider the per-phase diagram on Fig.2.16. The resistance of the inductor is assumed
negligible for the design process.
Vi

VSl AC-side L Grid-side
— .
——

Vk | \'

Fig.2.16: Per-phase grid-connected diagram with L-type filter

Equation (2.24), which uses RMS values of variables, shows the voltage drop in the grid filter at
fundamental frequency

Vi) = 2f,L (2.24)
Thus, the maximum voltage drop V maxwr Will imply a maximum inductor value Lyax.
V,
Lyax = toe(LE) (2.25)
2pf,|

On the other hand, the current ripple is related to the converter’s instantaneous voltage using the
superposition method. Equation (2.26) shows the maximum instantaneous voltage step that can be deliver a
N-level VSI, see Fig.2.17.
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Fig.2.17: Ingantaneous converter’s per-phase voltage valuesrelated to neutral point of grid: a) 2L-VSI with
MLV-PWM, b) 3L-NPC VSl with NTV-SVM

The per-phase voltage in an inductor v, could be approached considering the relation between the
voltage step variation vy, in the inductance related to the instantaneous converter’'s per-phase voltage
values an the average voltage drop (Vi)m toward it during the apparent switching period.
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The average voltage drop is related to the converter’'s gatic characteristic expression, see Fig.2.18.
Equation (2.28) defines the atic characteristic of N-level VS| which depends on the duty cycle () and the
converter’ stopol ogy.

— 2\/DC
(Vk )m = m X

Neverthdess, if the apparent switching frequency is enough, the well-known inductor’s voltage
dynamic behavior can be approached as:

(2.29)

vV, = Lﬂ @_Dlﬂ (2.29)
dt Dt
Therefore, the current ripple can be approached considering a smple geometrical analysis, see
Fig.2.18. Equation (2.30) shows the minimum inductor value expression taking into account the
converter’ stopology, average switching frequency and duty cycle.

2V,
VL (V) = 3(ND_C1) A

t
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Fig.2.18: Current ripple approach during control period
. N, (@- 1)
Dy by =—=——— (2.30)
3(N- 1)f,,

Finally, the selection of the inductor must be realized by the designer between Lyax and Ly values.
However, this method is rather ambiguous and allows different degrees of freedom which can be utilized
in order to emphasize some design criteria against others. This work is focused on MV grid-connected
converters. Because of this it is necessary to find a good trade-off solution between power quality and
systems cost. The power quality is represented by current quality and the system’s cost can be related to
the voltage drop in the filter, which findly defines the converter’s size Though the maximum
instantaneous current ripple is reached with a duty cycle of 0.5, this case has a little influence in the
overall ripple behavior asit is only applied for a short time during each line-period. In fact, in sinusoidal-
type evolution, the maximum duty-cycle is applied during the largest part of the period, so it can be
considered as a good approximation to the overall ripple value. Fig.2.19 shows the relation between the
current ripple and the voltage drop assuming a duty cycle of 0.9 under several switching frequencies and
specifications shown in Table 2.1. The points of each graph are related to different inductors and the
required minimum DC-voltage values.
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Fig.2.19: Current ripplereated to voltage drop though L-typefilter: a)2L-VSl, b)3L-NPC VS

The 3L-NPC VS, as expected, shows lower values of current ripple and voltage drop at a given
switching frequency. On the other hand, it is necessary to consider that these kinds of MV converters
must operate at switching frequencies below some kHz, assuring that power 1osses do not exceed the
technological capability of semiconductors [17;21;92;93]. As a result, in the frame of this work, see
Table 2.2, a technologically-possible frequency of 1.5kHz is considered. Fig.2.20 shows the current
ripple and voltage drop under a switching frequency of 1.5kHz for both 2L-V S| and 3L-NPC VSI.
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Fig.2.20: Current ripplereated to voltage drop though L-typefilter at 1.5kHz

Typically, a current ripple of 10% implies a THD of around 5% and fulfills the IEEE 519-1992
standard recommendation [17;92;93]. The 2L-VSI would require an extremely large inductor (4mH),
which will results in a high voltage drop across it (47% of phase-voltage) and a high DC-link voltage
(4630V). These results confirm other studies as [92], and it can be argued that the 2L-VSI with L-type
filter is not a useful medium-voltage converter if high efficiency and a low THD are required. On the
other hand, 3L-NPC VS| needs a smaller inductor (1.7mH) and DC-link voltage values (3987V) with a
voltage drop through the filter of around 20%.
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Finally, in other to compare the behavior of different converters with the same filter, an inductor of
2.1mH is chosen for both the 2L-VSI and 3L-VSI. Thus inductor generates a voltage drop of 25% and
requires a DC-link voltage of 4100V, see Fig.2.20. Therefore, the 2L-VSl will not fulfill the IEEE 519-
1992 recommendation (current ripple of around 16%), whereas the 3L-V S| will be within this standard
with a THD below 5% (current ripple of around 8%).

24.2. DC-Link Capacitor Design

The DC-link capacitor has an important influence from the install ation viewpoint because it stores the
energy that is necessary in the system. Therefore, the design of this component will depend on the
application and will usually have a significant effect on the weight, sze and final cost [85-87;87,89;90].
This work is related to grid-connected VSIs which operate as inverters of a main source, supplying a
power level to the grid under a given power factor. Thus, some energy criteria must be used for the design
of the DC-link capacitor. Other second criteria of design and final selection could be considered as:

The maximum voltage (mainly defines the technol ogy)
The peak to peak and RMS current values

Fig.2.21 shows a generic diagram (both 2LVSI and 3L-NPC VSI) of a DC-link between the main
source and the converter’s DC side. The voltage behavior on the capacitor depends on the DC current ipc
and VS| operation which has been defined as a current function is (2.31).

Main Source VS| DC-Side
> -+ e
loc If
Cpoc=—|Voe
DC-link

Fig.2.21: DC-link diagram

dv . .
bC dE[)C =lpc - I (2:31)
Considering the energy stored in the DC-link.
1
W = E CDCVDC2 (2.32)
Its variation can be expressed as.
dw dv
_dt = CpeVpe —dE[)C (2.33)

Taking into account this expression and multiplying (2.31) by vpc, it is possible to get the well-known
energy-balance equation.
dw
— =P R
dt
Where Py is the power delivered by the main source and with P is the power supplied to the grid by
the VSI. Considering (2.33) and (2.34) and the maximum voltage variation at the DC-link DVDC, the
capacitor’ s value can be approached to (2.35).

(2.34)
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DP Dt
Coc® ———— (2.35)
IJ/DC >QIDC

where At is the delay time required by the control to adjust the outgoing power P; to the new
incoming power Ppc. Thisdesign criteriais usually employed in AC/DC/AC converters, aso called back-
to-back converters [53;86;90]. Other similar applications as rectifiers [94-96] only take into account the
gtatic behavior of the converter without considering the power variation in the DC-link. Anyway,
typically a ripple from 1% to 10% of the DC-link voltage is assumed. On the other hand, the power
variation and the delay-time needed by the DC-link control loop depend mainly on the characteristics of
the main source. In the case of a wind-turbine application the semi-instantaneous power variations are
limited to 10% of the rated power and it is supposed that the DC-link control loop is able to regulate it
within two grid periods [6;89]. These consideration result on an acceptable capacitor value of 12mF
assuming a 5% voltage ripple in the DC-link. Logically bigger capacitor values would give better output
distortion results. However, the price and volume of the capacitors are also related to their ratting.
Therefore, a compromise should be taken between a sufficient voltage ripple and a reasonable capacitor
size.

2.5. Selection of Active Components

The medium/high power systems rated with the specifications listed in the Table 2.2, have been
usually based on conventional technologies (Thyristors, GTOs, etc.). Today there are some studies that
assure, under these power and voltage levels, improved features using HV-IGBTs[1;17;20;92]. The main
advantages are a higher switching frequency, an easier driving due to the MOS-gate and improved
cooling and insulation because of the fully isolated package. Some semiconductor manufactures as
EUPEC classify their products depending on the field of applications. Fig.2.22, for ingance, presents
6.5kV 1GBT-based modules that usualy are used for pumps, fans, compressors, and others medium-
voltage drive applications [25].

Application fiald : TRACTION INDUSTRIAL DRIVES PULSE POWER
line voltage : line voltage : line voltage : u;te;;(t ;g':fegre: i
3kvDC 23 kV AC | 416 kV AC =100 kV /10 MW
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(¥ czmax= 15 ... 2.0 % ¥ ocpam ) @ D ﬂ D
| 6.5kV IGBT Modules

Fig.2.22: Application fieldsfor 6.5kV modules[25]

pulse transformer

However, it isnot enough to select the IGBT modules based only on the rated current and voltage. It
is also necessary to compute static and transient losses and temperature rises in the semiconductor
modules. This field is out of the scope of this research where extensve iterative ssimulations must be
carried out based on complex loss and thermal models [17;21;23;92;97;98]. Nevertheless, a good final
design should take into account these considerations, selecting an optimal set of semiconductors.
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2.6. Simulation Results

In order to verify the design of the proposed MV grid-connected converter’s, several simulations
involving the 2L-VSI (with SV-PWM and MLV-PWM) and the 3L-NPC VS| (with NTV-SVM) have
been carried out. The specifications and parameters of simulation results are summarized in Table 2.3.

TABLE 2.3
SPECIFICATIONS OF THE GRID-CONNECTED THREE-PHASE VSIs
Value [unit]

Rated Power (Sy) 2[MVA] cosg=0.9(i)
Fundamental frequency (fo) 50Hz
Rated line-to-line Voltage (RM S) 2.3[kV]
L-typeFilter 2.1[mH]
DC-link 12[mF] / 4100 [V]
Topology 2L-VS 2L-VS 3L-NPC VS
M odulation (SV-PWM) (MLV-PWM) (NTV-PWM)
Switching frequency fs=1500 [HZ] f=1500 [HZ] f=1500 [HZ]

Fig.2.23a shows the modulation index and the line current along with the converter’s switching
signals for the 2L-V S| with SV-PWM under nomina operation conditions. The steady-state is evaluated
analyzing the current THD. Fig.2.23b shows the harmonic spectrum which establishes a current THD of
5.62%, out of the Std. 519-1992 recommendation. It is an expected result considering the grid filter
design of 2.4.1 which isnot optimized for the 2L-VSl under the operation conditions established in Table
2.2

2L-VSI with SV-PWM

Fundamental (50Hz) =709.03 A
THDI =5.62%
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Fig.2.23: 2L-V Sl with SV-PWM: a) M odulation index, phase switching signals and normalized line current, b)
Current frequency spectrum

In fact, the 2L-V S| with MLV-PWM does not fulfill the standard recommendation, showing the worst
current-quality (THDi=7.93%), see Fig.2.24. In this case, thereisnot any switching near the maximum of
line-current, which is an interesting fact in relation to power-losses in high power applications. However,
thisimprovement is closaly related to current-spectrum deterioration.
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Fig.2.24: 2L-VSl with MLV-PWM: a) Modulation index, phase switching signals and normalized line current,
b) Current frequency spectrum
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Finally, Fig.2.25 shows the simulation results of the 3L-NPC VSl operating with NTV-SVM strategy.
The grid sector, region, per/phase switching signal, normalized current and frequency spectrum show in
this figure an overview of the operation of the control. The steady-state operation matches with the the
grid-filter design-consderations established in 2.4.1. The current THD below 5%, fulfills the Std. 519-
1992 recommendeation.

In order to evaluate the switching frequency behavior in the proposed configurations, the total number
of commutations along a grid period has been computed, see Fig.2.26. Note that from this figure the
apparent switching frequency can be straightforwardly derived if the total number of commutations
during the grid period is considered in equation (2.20). Thus, 180 commutations during 20 msresults on an
apparent frequency of 1500Hz, whereas 120 commutations will define an average frequency of around
1000Hz. MLV-PWM and NTV-SVM dtrategies then show a reduction of 33.33% in the switching
frequency compared to SV-PWM. These results are expected because both strategies employ three
voltage vectors per control period whereas SV-PWM is based on four voltage vectors.
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Fig.2.25: 3L-NPC VSl with NTV-SVM: a) Sector, Region, phase switching signals and normalized line
current, b) Current frequency spectrum
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The current and voltage ripple in the DC-link capacitors for the proposed configurations along two
grid periods are shown in Fig.2.27 and Fig.2.28. These simulation have been carried out assuming the
DC-link dynamic models of equation (2.4) and (2.9) under nominal operation conditions. In the 2L-VSI
case, the SV-PWM dtrategy results on a denser DC-link current-ripple than MLV-PWM. Consequently, a
smaller voltage ripple is generated at the DC-link. Thus, the SV-PWM-based configuration shows a DC-
voltage ripple of around 0.05% with a RMS current of 273.49A through the capacitor, whereas the
voltage ripple is near 0.1% and the RMS current is 274.84A when the MLV-PWM-type technique is
utilized. In a similar way, Fig.2.28 shows the DC-voltage and current behavior related to 3L-NPC VS
with NTV-SVM. This configuration shows a DC-voltage ripple of 0.06% with a RMS current near to
273A through the capacitors which compose the DC-link. In addition, a characteristic perturbation of this
kind of modulators at the typical frequency of 150Hz isidentified.
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Fig.2.27: DC-link voltage and capacitor’scurrent ripple a) 2L-VSI with SV-PWM, b) 2L-VS| with MLV-
PWM




38 Analysis and Design of 2L-VS| and 3L-NPC VSl for MV Grid-Connected Application

3L-NPC VSI with NTV-SVM
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Fig.2.28: DC-link voltage and capacitors current ripple and voltagein 3L- NPC VSl with NTV-SVM

2.7. Conclusions

In this chapter, some analysis and design considerations of grid-connected converters have been
discussed. Concretdy, the 2L-V Sl and 3L-NPC VS configurations with L-type filters have been studied,
leading to a generalized devel opment of N-level NPC VSI. Furthermore, some of the main features of the
widely employed vector-based modulations have been shown, involving SV-PWM and MLV-PWM for
the 2L-VSI and NTV-SVM for the 3L-NPC VSI. Moreover, passive components of MV grid-connected
converters have been designed taking into account basic specifications and conditions which are close to
the commercialy available units. In fact, a grid-filter design approach using low and high frequency
considerations has been developed and some energy criteria for DC-link capacitor design have been
utilized.

The L-type filter for MV grid-connected applications has been selected due to its simplicity and
reliability. Though it is a satisfactory choice for the 3L-NPC-VSI case, the 2L-V S| topology requires an
extremely larger inductor in order to fulfill the standard IEEE 519-1992 recommendation. This high
inductor value leads to a high voltage drop and consequently a higher DC-link voltage requirement.
Therefore, the 2L-VSI with L-type filter is not a useful MV converter topology if high efficiency and low
THD is required. One way to overcome this problem would be the choice of LC or LCL filters, which
will be taken into account in future studies.

The DC-link capacitor design procedure is based on the knowledge of the energy exchanged between
a wind-turbine and the grid, and has been carried out considering usual power variations, the maximum
DC-link voltage ripple and the typical time of commonly used controls.

An optimum sdlection of active components of the proposed configurations requires extensive
iterative simulations based on complex loss and thermal models which are out of the scope of this thesis.
Thisresearch only deals with the state of the art provided by some manufacturers as EUPEC.
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Finally, severa smulations have verified the validity of the proposed converters for MV grid-
connected operation conditions. They have been compared between using severa indicators, as the
current quality (by means of the THD), apparent switching frequency and DC link voltage ripple. It is
possible to conclude that the 2L-V Sl is not well behaved for MV operation with a smple inductive filter.
On the other hand, the 3L-NPC VSl with NTV-SVM shows a very good steady-state performance and
fulfills the connection requirements contained on the Std. 519-1992 recommendation. In spite of this, its
basic configuration generates the well known 150Hz harmonic in the DC-link voltage.






Chapter 3

3.Power Control Srategies for Grid-connected
VSl-based Systems

3.1. Introduction

Generally, VSI-based systems must provide a target active and/or reactive power to the line, and for
this an appropriate power control strategy is required. Asit has been shown in Chapter 1, athough there
are many drategies to control grid-connected converters, VOC-type indirect control is commonly
employed. It has become a very popular control technique, developed widely in applications such as
power generation, drives, power quality systems, and others [2;39;44;56;90;99-101]. On the other hand,
DPC has been developed by many researches because it offers faster transents and robust behavior,
employing directly active and reactive power tracking requirements [45;46;48;49;51;54,55;86;96].

This chapter evaluates both control methods and shows the main features and reguirements under MV
grid-connection operations. This way, VOC and DPC-based strategies for the 2L-VS| and 3L-NPC VSl
have been developed in such a way that the steady-state and trand ent-state operation performances have
been analyzed.

3.2. Voltage Oriented Control (VOC)

The first Chapter has introduced the basic block diagrams and performance indexes of VOC-type
based controls, see Fig.1.5 and Fig.1.6. The VOC drategy is based on the knowledge of the position of
the line-voltage vector and the relative spatial orientation of the current vector. Typically, grid-connected
converters control-structures are based on Park’s transformation to a rotating dgO reference frame
(aligned with the line-voltage) [2;39;101]. In fact, it is usualy built by two cascaded control loops so that
afast inner loop controls the grid current and an external [oop the DC-link voltage. In Fig.1.5, the power
exchange control is carried out by means of current control, which must be tuned considering some
design criteria. Therefore, in this section a line current control 1oop based on rotating reference frame will
be developed in order to obtain a good transient behavior and an acceptable steady-state operation for
both the 2L-V Sl and 3L-NPC VS!.

3.2.1. Line Current Control Loop

It is necessary to take into account that the models which have been developed in Chapter 1 are not
linear. In order to simplify the analysis and synthesis of the control loops, linear models are usually used.
It is straightforward to derive the following continuous model s from equation 2.6.

- - di ~
Vg =Ri, + Ld—:- wLi,, +,
- (31)
A ~ | PR
Vi :R|q+Ld—f+wL|d +V,
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Here vigq represents the converter’s average-voltage-vector in a switching period and defines the VS|
as alinear controlled continuous voltage source. The transfer-function type block description is shown in
Fig.3.1.

\VAR) qu VatwLikg
i_ K £ i K )
- | - L
Vig * 1+t cS Vig * 1+t cS

Fig.3.1: Block representation of current dynamicin dq reference frame

Thus, K isthe DC gain and 1¢ defines the time-constant of line-current dynamic behavior. The grid-
voltage and cross-coupling effect can be considered as system’ s perturbations.

k=1
R (3.2)
L

te=—

Fig.3.2 shows a generic block diagram for the line current control loop based on a Pl controller,
involving both d and g rotating components. The VS is approached by a linear function where Kyg
defines the converter’s gain, tvg represents the switches dead-time and the converter’s time-constant
includes the delay-time of the PWM technique (tpwv) and measurement-system’s sample-delay
(19)[53;96;102]. Hence, the converter’s gain can be assumed to be equal to Kyg=1, and considering the
statistical delay of PWM generation, we get tpw=0.5Ts,y. The dead-timeis negligible in the case of idedl
converters and the sample-delay time usually matches with the control period Tg,.

Perturbation

PI controller I'ST Grid-filter
’;”:_q * —+ l {-},‘_d_g * j_-(: e— FCypsr "{‘kr.!_q —|— A— ?('-‘!—{f
o For sl (1| sl Kme gt ) :
— T -s) I+ (7., +7.)s + 1478

Fig.3.2: Block diagram of line current control loop approach
Considering that tc isthe dominant time-constant the grid-filter model can be simplified asfollows:

K K
@— (33)
1+t.s tcs

The open-loop and close-loop transfer functions of the system of Fig.3.2, neglecting the perturbation
effect, are derived in equations (3.4) and (3.5).
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K, K(Ts+1)
Fous) = BMaw O (34)
tDc-I-iSZ§+7SNS+ .

e 2 g

K K(Ts+1)
Fous) = 3Ty .0 (35)
t T8+ 2w 24 K K(Ts+1) |

e 2 g
3.2.2. Controllers Design Criteria

There are several methods and design criteria to select the parameters of Pl controllers (K, and T;).
Among these approaches; the Internal Model Control (IMC), Symmetry Optimum (SO) and Modulus
Optimum (MO) are the best suited in order to make the controllers design way straightforward
[54;102;103]. In this case, SO-based considerations are applied in such a way that the maximum phase
margin is obtained. Thus, the following conditions are established

=0t =
1

W, =—F——— :

™ o 70 °

Here p is a design parameter and W, is the desired system’s wide-band under close-loop operation.
The graphical representation approach of the SO method is shown in Fig.3.3.
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Fig.3.3: Graphical representation approach of Symmetric-Optimum method
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Therefore, the open-loop transfer function of equation (3.4) can be rewritten in the frequency domain
(s=jw) if equation (3.6) is considered.

KDKEE} 2&1W+1—
Foi =- e 2 2 (38)
(jw) 5 2 3TSN 0
ter w gi+ jw

e 2
Taking into account that when w is equal to W, the system’s open-loop gain (in module) must be
equal to unity (|FoL«)[=1), the following expression for K, is derived.

t
K o =-__C
& Kr (3.9

2
Fig.34 shows the results of a parameter sdection for current-control loop employing the
specifications and conditions defined in Chapter 2 for the MV grid-connected 2L-V S| and 3L-NPC VS|.
Concretely, Fig.3.4a shows a good (positive) transient response (solid line) during a step change on
current reference value, with a setting time (within 2%) near 19ms and a rise time of 2ms. However, this
design method shows a remarkable effect on the overshoot (57%) and a non negligible sensitivity to
perturbations (dashed ling) in transents. In order to reduce the overshoot, a previous filter, called a
prefilter, is applied to the current reference [53;102;103], see Fig.3.5. Fig.3.4b shows a prefilter-based
control system performance, leading to a fast transient response around 16ms with arise time of 7ms, and
reducing the overshoot substantially (3.46%). However, the prefilter has no influence on the behavior
againgt perturbations and it is necessary to minimize its effects considering the cross-coupling relation
between the d and g axes. Fig.3.6 shows the proposed VOC-type strategy involving the prefilters and the

decoupled approach for current-control |oop.
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3.3. Direct Power Control (DPC)

Direct Power control (DPC) has become an interesting control strategy of grid-connected converters
because it provides the maximum dynamic capability available in the system. This non-linear control
strategy is defined as a direct control technique because it chooses the best suited converter’s voltage
vector without any modulation technique. The basic control structure of DPC has been shown in Fig.1.9
where two cascaded control 1oops are described; an interna active and reactive power regulation loop and
an externa control loop which establishes the DC-link voltage requirements. The inner loop evaluates
directly active and reactive power tracking requirements, pushing the state of the system toward the
reference values. This section will develop two DPC control strategies for the 2L-VS| and 3L-NPC VS|.

3.3.1L Power Control

The power control computes instantaneous active and reactive-power values. The definition of
instantaneous power is still a source of controversy between researchers [104-111]. Among the theories
that have been successively proposed over the last years, this work retains the “original” three-wire
system’ s definition [110]. Thisway, instantaneous active and reactive power is defined as follows:

épy_6v, %060
&ag g' Vp VaH dy ()

Herev,; and i, are the line voltage and current in static o coordinates assuming power conservation
in Clark’s transformations. It is possible also to represent instantaneous active and reactive power using
Park’s transformations where vyq.q and iq.q, are the line voltage and current in the rotating dq reference
frame. From the computation point of view, Clark’s transformation uses simple linear relations whereas
Park’s transformation exploits trigonometric functions and requires to known the grid phase location, see
Appendix A.

(3.10)

c
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The power control loop task continuoudly computes the instantaneous errors between the reference
and the actual power values. These errors are evaluated by means of hysteresis controllers that establish
the converter’s switching state from a switching table, commonly called look-up table. Therefore, a
correct implementation of DPC requires a fast estimation of the ingantaneous power and an adequate
look-up table.

This control strategy leads to variable switching frequency which depends mainly on the sampling
time, the look-up table, the hysteresis wide-bands, the load parameters and the state of the system.

3.3.11L Grid Sector Selection and Hysteresis Controllers

One of the main design factors of DPC technique is the division of the grid-voltage space-plane in
different sectors. In fact, it defines the look-up table where the best-suited voltage-vector available in the
converter’s AC-side is chosen. There are many possibilities of dividing the space-plane, but six-sector
and twelve-sector-based solutions are commonly employed. In this dissertation a twelve-sector-based
division has been retained for the 2L-VS| and 3L-NPC VS configurations, see Fig.3.7. Note, that this
distribution corresponds to the MLV-PWM technique (Chapter 2) where the space planeis divided in six
sectors of 60°, [0;.. Bg], which are also divided in two sub-sectors, [0ia.. 6is].

Fig.3.7: Sector selection for DPC

On the other hand, the type of hysteresis controllers has also an important effect on the conversion
performance, i.e., in the apparent switching frequency, the resulting current spectrum and the power
losses. The basic DPC structure usually exploits two-level hysteresis comparators, yet some interesting
work has been carried out which proposes different combinations of two and three-level hysteresis
controllers [43;48;49;112]. Generally, they establish a wide-band H round the active and the reactive
power references in such a way that steady-state error can be limited. Fig.3.8 shows the two-level
hysteresis comparators used in this dissertation. The controllers' laws are described in (3.12) and (3.13).
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Fig.3.8: Two level hysteresiscontrollers
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3.3.1.2. Active and Reactive Power Time-derivatives

dg
o

(3.12)

(3.13)

The ingtantaneous active and reactive-power time-derivatives establish the trend of the controlled
variables, which isthe key step of the construction of the look-up table. It is possible to predict the power
behavior knowing the ingantaneous variations of the active and reactive powers, which can be expressed

as.

dP di, . dv, di, . dv,
" Va Tl TV, — =l ——
dt dt dt dt dt

i dv di
@ -y dla +i b b . dVa

__V_
dt " dt *dt *dt ° dt

(3.14)

Equation (3.15) shows the per-phase dynamic behavior of a VS| with an inductive filter (Fig.3.9), with

Vi the converter’ s voltage, v the line-voltage and i the line-current vectors.

vK=Ri+L%+v

(3.15)
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Fig.3.9: One-phase model of aline-connected VS

Neglecting the influence of the resistances of inductive dements and using Clark’ s transformation, the
instantaneous current behavior law under static coordinatesis derived (3.16).

(3.16)

The line-voltage variation is aso required in (3.14). Congdering anon-perturbed line:

v, =V, sin(wt) o
v, =-V coswt) '

Next instantaneous line-voltage variation law is obtained:

dv,
dt
dv,

Ttb =Vswsin(wt)=w v,

=V wcos(wt) =-w v,

(3.19)

and replacing (3.16) and (3.18) in (3.14) it is possible to get the functions describing the instantaneous
active and reactive-power time-derivatives.

dP &l .0 &l . 0

— ~Va G (VKa - Va)+W lp =+ V, G (VKb - Vb)_ Wi, ~

dt eL ) eL 1)
dQ . - . (3.19)

x 0 0

=V, QW o = — (VKb A )++Vb G (VKa Va)+W Iy =

dt e g el a

The power time-derivative values depend on the grid variables, filter inductors and on the converter’s
switching state. Fig.3.10 (Fig.3.11) shows, under unity-power-factor and steady-state operation, the
behavior of different active and reactive-power time-derivatives, related to different converter’s voltage-
vectorsin the 2L-V S| (3L-NPC VSI) case.
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3.3.2. Look-up Table Design

Fig.3.12 shows the time-derivative values under sector 2 for the 2LV S| case. It can be seen that the
application of Vi, Vi, Vi, Vks OF Vi VOItage-vectors implies a negative time-derivative of the active power.
Thisway, if any of these vectorsis applied, the active power tends to decrease. On the other hand, the use
of i leads to a positive time-derivative which will increase the active power. Furthermore, viq Or Vis can
induce both positive and negative time-derivatives depending on the part of the sub-sector where they are
used. The same procedure can be applied for the analysis of the reactive power behavior. Fig.3.13 shows
the active and reactive-power time-derivatives for the 3L-NPC VS| case.

Table 3.1 and Table 3.2 show an example of look-up tables for the two proposed VS| configurations.
In the 3L-NPC VSl case, different voltage vectors define similar time-derivative behaviors, alowing a
redundancy in the selection of the switching-vectors. This redundancy can be employed under different
contral criteria, becoming the DC link balance the most popular. In fact, a combination of two different
voltage-vectors in a sector is proposed, see Table 3.2 and Fig.3.13. The sdlection of each voltage-vector
will depend on the 3L-NPC converter’ s neutral -point-voltage error, trying to minimize it. Fig.3.14 shows
the proposed DPC-type strategy involving a DC-link balance for the 3L-NPC VSI.
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Fig.3.12: 2L-VSl: Active and reactive power time-derivative behaviorsin sector 2



51

Direct Power Control (DPC)

v

Vko
& Vi

Vi

4

,,A/Vk4_s “Viss |

R Via m | Ry Vi 5_m/
; k6_s
Vi | ‘ Vis_| ‘ Vi
2 L 1
0.5236 1.047 1.5808
tita [rad]
O2n 02

dQ 4 ‘
il

Vké_s Vi
= Vi Vka_| <&M

Vis_sk

Vk5_m

- Vk2_s'k - \
Via s (Vg | Vial | Vias

Yem T viam
1.5808

0.5236 1.047

tita [rad]

Oon On

Fig.3.13: 3L-NPC VSl: Active and reactive power time-derivative behaviorsin sector 2
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Fig.3.14: Block diagram of proposed DPC
3.4. Simulation Results

Simulations of the proposed control algorithms have been carried out with the aim to evaluate their
behavior for MV grid-connected applications. Specifications described in Chapter 2 (Table 2.3) have been
considered and steady-state and transent operation performances of the 2L-VSl and 3L-NPC VS
configurations have been analyzed. The steady-state is evaluated by means of current THD measurements
(THD;), active and reactive power ripple values (AP, AQ) and some DC-link performance features as the
voltage ripple and the RMS current across the capacitors (Avpc, ICocrus)- IN addition, the absolute error
between the reference value and the actua fundamental component (50Hz) of line-current has been
computed. On the other hand, the cross-coupling effect and the typical dynamic performance criterions as
the setting time, rise time and overshoot are considered in the trand ent-state operation.

Table 3.3 summarizes the main features and requirements of the suggested control strategies. Thus, in
order to develop a coherent comparative frame a given average switching frequency of 1kHz has been
assumed. The VOC type strategies require a control & sampling frequency 1.5 times larger than the
desired apparent switching frequency, whereas the DPC of a 2L or 3L-NPC VSIs needs a control &
sampling frequency 5 or 6 times larger than the apparent switching frequency. Thisis the reason why the
control & sampling frequency of the DPC of the 2L-VSI goes up to 6kHz in contrast to the 1.5kHz
required by the VOC type MLV-PWM.

TABLE 3.3
MAIN CHARACTERISTICS OF CONTROL STRATEGIES

Control Method Apparent Switching Control & Sampling
Freguency Freguency
2L-VS VOC with MLV-PWM 1 [kHz] 1.5[kHz]
DPC 1 [kHz] 6 [kHZ]
3L-NPC VS VOC with NTV-SVM 1 [kHz] 1.5[kHz]
DPC 1 [kHz] 5 [kHZ]
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34.1. Steady-state Performance

Fig.3.15 and Fig.3.16 show the per-phase switching sgnals, normalized line current, frequency
spectrum and power performance for the 2L-VSI, using both the VOC-type control strategy with MLV-
PWM and the DPC. As can be observed the VOC shows the best power quality (THD;=8%) and the
minimum power ripple (AP=12.73%, AQ=14.96%) with a bounded harmonic spectrum around the
converter’s switching frequency. The DPC leads to a dispersed harmonic spectrum with a large THD of
around 16% with considerable power ripple values (AP=20%, AQ=31.83%). In spite of the fact that both
strategies do not fulfill the IEEE Std 519-1992 recommendation, the VOC technique shows some
advantages from the point of view of the grid filter design considerations and grid resonances prevention.

On the other hand, the VOC with MLV-PWM shows a small tracking error of around 0.36%, while
the absolute tracking error reaches 9% in the DPC case. Furthermore, the voltage ripple in the DC-link
capacitor isclearly smaller in the VOC (Avpc=0.14%) than the DPC strategy (Avpc=0.34%), see Fig.3.17.
Nevertheless, the RMS current in the DC-link capacitors is lower in DPC (ICpcrmg=274.56 A) than in
vVOC (l CDC(RMS):252-73A) .
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Fig.3.17: 2L- VSI. DC-link voltage and capacitor’scurrent ripple: @) VOC with NTV-SVM b) DPC

The average switching frequency is evaluated taking into account the total number of commutationsin
a grid period. Fig.3.18 describes the behavior of the switching occurrences on a 2L-VS| during a time
frame from 0.98s to 1s. The VOC with MLV-PWM (solid-line) defines a linear trajectory which is
characteristic in constant switching frequencies, whereas the DPC (dashed-line) shows an irregular
performance. However, both control strategies employ the same number of commutations (around 120)
along the grid period, establishing an average switching frequency of 1kHz.
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The same two control strategies have been evaluated in the 3L-NPC VS| case. Fig.3.19 and Fig.3.20
show the simulated per-phase switching signas, normalized line current, frequency spectrum and power
behaviors related to the proposed control algorithms. As can be derived, the VOC with NTV-SVM
presents better results in steady-state power performance (AP=9.15%, AQ=8.27%) than in the DPC
technique (AP=18.57%, AQ=23.60%). In fact, the current THD measurements are around 4.26% in the
first case and 10.78% in the second case. Thisway, only VOC with NTV-SVM meets the |[EEE Std. 519-
1992 recommendation. As expected, the voltage ripple in the DC-link capacitorsis clearly smaller in the
VOC-based strategy (Avpc=0.11%) than in the DPC method (Avpc=0.25%), see Fig.3.21. The RMS
current in the DC-link capacitors are around 272A and 244A respectively. Furthermore, the absolute
tracking error is 0.37% in the VOC-type strategy whereasit is near 6% in the DPC.
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Fig.3.19: 3L-NPC VSl. Phase switching signals, normalized line current and freguency spectrum: a) VOC with
NTV-SVM b) DPC
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Fig.3.21: 3L-NPC VSl. DC-link voltage and capacitor’scurrent ripple: a) VOC with NTV-SVM b) DPC

Fig.3.22 shows the switching behavior of the 3L-NPC VS| with the two proposed control strategiesin
a grid period. The VOC with NTV-SVM (solid-line) operates at constant switching frequency and
thereforeit describes alinear trajectory. However, the DPC (dashed-line) is based on a variable switching
pattern and it implies an irregular switching performance. In spite of this, both control strategies employ
the same number of commutations aong the grid period (near 120) and it could be said that they use the
same average switching frequency of around 1kHz.
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3.4.2. Transient Performance

Several simulations have been carried out in order to verify the behavior of the proposed control
algorithms during trangents. These simulations involve the 2L-V Sl and 3L-NPC VS configurations with
the VOC and DPC-based control strategies. Active-power reference steps from 1.4AMW to 2MW have
been applied (30% of nomina power). Note that reactive power steps will produce similar results in
transients, so these cases are not evaluated. Fig.3.23 shows the instantaneous active and reactive power
behavior during active reference steps with the 2L-VSl configuration. As shown, the DPC is clearly faster
than the VOC with MLV-PWM in power tracking task. The transient performance shows the expected
behavior defined in section 3.2.2 in the VOC-based strategy, see Fig.3.24.

To quantify the trangent behavior, a power band near 10% of the rated power is established. This
way, a setting time close to 16ms, a rise time below 7ms and a small overshoot of around 5% can be
observed in the VOC-based configuration. Y et, the DPC needs few ms (a setting time below 2ms with a
rise time of around 3ms) without overshoot in power tracking requirements. Furthermore, there is no
cross-coupling effect between active and reactive power in the DPC, whereas the VOC with MLV-PWM
shows a substantial perturbation in thereactive power behavior when active power changes are applied.

In asimilar way, several simulations considering the 3L-NPC VS| have been carried out. Fig.3.25 and
Fig.3.26 show the instantaneous power behaviors under active power reference steps from 1.4MW to
2MW. These figures are coherent with the previous results related to the 2L-VSI in such a way that
similar transients are obtained. Thus, the VOC with NTV-SVM shows a setting time, rise time and
overshoot close to the design values, see Fig.3.26a. Also, it presents a cross-coupling effect between
active and reactive power behaviors. On the other hand, the DPC shows a very fast transient response (it
takes only 4ms instead of 15ms required by the VOC) without overshoot and cross-coupling effects.
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Conclusions

3.5. Conclusions

The synthesis and analysis of two of the most interesting control methods for MV grid-connected
operation conditions have been carried out. The first one is related to the widely employed VOC-type
strategy and the second to the DPC which has become very popular in literature. Two different control

strategies have been used in order to obtain good transent and steady-state performances.

With the aim to evaluate the proposed control algorithms, a coherent comparative frame toward each
converter’s topology has been defined. Hence, the same apparent switching frequency has been assumed,
anayzing several steady-state and transient operation performances. The steady-state simulations show
the best power quality features and the smaller power-tracking error in VOC-based strategies. On the
other hand, DPC techniques offer the fastest transient behavior without overshoot and cross-coupling
effect. Table 3.4 shows a brief description of the simulation results aong with the characteristics and
requirements of each control agorithm.

TABLE 3.4
CONTROL FEATURES AND REQUIREMENST
Features 2L-VS 3L-NPC VS
MLV-PWM DPC NTV-SVM DPC
Switching Frequency Constant Constant Constant Constant
fSNMAX =15 kHz fSNMAX =6 kHz fSNMAX =15 kHz fSNMAX =5 kHz
ngNzlkHZ ngNzlkHZ ngNzlkHZ ngNzlkHZ
Control & Sampllng TSN=1/ fSNMAX TSN=1/ fSNMAX TSN=1/ fSNMAX TSN=1/ fSNMAX
Period
M odulation MLV-PWM - NTV-SVM -
Technique
Current 8% 15.85% 4.26% 10.78%
) THD
® Tracking 0.36% 9% 0.37% 6%
E Error
S Power Ripple AP (12.37%) AP (20%) AP (9.15%) AP (18.58%)
8 AQ (14.96%) AQ (31.83%) AQ (8.27%) AQ (23.60%)
7 DC-link Ripple Avpc (0.14%) Avpc (0.34%) Avpc (0.11%) Avpc (0.25%)
|CocrMs)(274.56A) | CocrMs)(252.73A) |CocrMs)(272.34) | CocrMs)(250.15A)
Cross-coupling Yes No Yes No

- Effect
.é Dynamic Setting time (<16ms) | Settingtime (<2ms) | Setting time (<15ms) | Setting time (<3ms)
S Performance Risetime (<8ms) Risetime (<3ms) Risetime (<8ms) Risetime (<4ms)
= Overshoot (~5%) Overshoot (-) Overshoot (~8%) Overshoot (-)

It isimportant to note that a basic DPC structure has been employed, so important improvements can
be realized. In order to obtain both high transient dynamics and constant switching frequency, a new
control approach based on DPC and predictive considerations is proposed in Chapter 4. This way, the
devel oped approach will improve the steady-state performances while keeping the transient behavior.







Chapter 4

4. Predictive Direct Power Control

4.1. Introduction

This chapter describes the main contribution of this dissertation: the Predictive Direct Power Control
(P-DPC), a new control approach where the well-known direct power control (DPC) is combined with a
predictive selection of a voltage-vectors sequence, obtaining both high transient dynamic and constant
switching frequency. Four different P-DPC versions, which differ on the type of voltage-sequence used,
are developed. Simulations of these strategies applied to grid-connected 2L and 3L-NPC VSIs under
2.3kV-2MWA operation conditions have been carried out. Thanks to its good transient behavior and its
constant switching-frequency the P-DPC could become an interesting alternative of standard VOC
techniques for grid-connected converters.

4.2. Predictive Direct Power Control. Theory and Application
The P-DPC sdlects the best voltage-vectors sequences and computes their application times in order
to control the power flow through the VSI under constant switching frequency operation. This strategy

requires a predictive mode of the instantaneous power behavior, which is explained next, followed by
several possible control approaches.

4.2.1. Predictive Model of the Instantaneous Power Behavior in a line-
connected VSl

P-DPC is based on the predictive model of the ingantaneous active (P) and reactive (Q) power time-
derivatives (4.1), which has been explained in Chapter 3 for ageneric VS| with an L-type inductive filter.

ﬁ =Va E{‘El_ (VKa - Va)+Wib 2+Vb E{‘El_ (VKb - Vb)_ \Nia2
dt L g eL g “
dQ_ & . 1 o, el o) '
Ezva QW la = — (VKb - Vb)++vb G (VKa - Va)-'-V\”b+

e L g el

The following considerations have been taken into account: any given voltage Vi = [Vi, vKg]T at the
output of the VSl is kept constant during each voltage-vector application. In the same way, if the
switching frequency is high enough, the line voltage v = [v, vﬁ]T can aso be considered constant during
the same period. Thus, and provided that current variations are small, quasi-constant active and reactive
power evolutions can be considered during each voltage-vector application. These assumptions allow
simple geometrical analysis of concatenated power evolutions. Active and reactive power-evolution
dopes during a voltage-vector application are defined as follows:

_dP

T At (42)
_dQ

T odtl
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Here i denotes the position index of the applied voltage in the sequence of voltage-vectors. Equation
(4.3) computes the evolution of active and reactive powers under a given voltage-vector application during
the related application time.

I:)i = I:)i—l + fpi tai

Qi =Qi-l + fqi tai
And here {P,; Q4} indicates theinitia active and reactive power values in the beginning of the i-th

vector of the sequence, t, the application time and {P; Q} the active and reactive power values at the end
of the application time.

(4.3)

4.2.2. P-DPC based on a Two Voltage-vectors Sequence

The P-DPC strategy is based on the concatenation of several (4.3)-type trajectories along the control
period, leading to the so-called voltage-vectors sequence. This concatenation can be carried out in
different ways, e.g., it can result in a non-symmetrical switching pattern containing two or three voltage
vectors, or it can provide a symmetrical switching pattern combining two or three vectors, the so-called
2+2 or 3+3 voltage-vectors sequence. This section will deal with the P-DPC based on the concatenation
of two (4.3)-type trajectories along the control period Tgy. Fig. 4.1 shows an example containing a first
steady state control period followed by an active power reference transient. In the beginning of each
period the control must select two of the applicable voltage vectors and compute the required application
times.
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Fig. 4.1: Examples of the power s performance of P-DPC strategy based on two voltage vectors' sequence: a)
Steady-state behavior b) Transient behavior during an active power reference step
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4.2.2.1.

Voltage-vectors Selection

In this first approach the use of an active voltage-vector followed by a null vector is proposed. The
active vector must be selected considering active and reactive-power time-derivatives defined in Chapter
3. On the other hand, the null vector is chosen in such a way that minimum switching actions occur in
each control period. Hence, the selection of the best suited combination is carried out taking into account
that active and reactive power tracking requirements will be fulfilled. This way, the following voltage-
vectors' sequences have been proposed for the 2L and 3L-NPC VSIS, see Table 4.1 and Table 4.2. Note,
that in the 3L-NPC VSl different voltage-vectors sequences can be selected. As it has been pointed in
previous sections, these extra degrees of freedom must be used in order to achieve complementary control
requirements; as the DC-link voltage-balance.

2L-VSI. VOLTAGE-VECTORS SEQU EKC?IIE_E ééLAT ED TO POWER REQUIREMENST
dp|da| 61n | G | Ooa | O | Gan | O | Osn 048 Ospn | Os8 | Osn | Oss
11 1 |ve Vi Vi Vi Vi Vi Vi Via Vi Vi Vi Vi
V7 Vo Vo V7 V7 Vo Vo V7 V7 Vo Vo V7
1] 0 |w V V V Vi Vi Vi Vi, \ Vi Vi Vi
Vo V7 V7 Vo Vo V7 V7 Vo Vo V7 V7 Vo
0| 1 |w Vi | i/ | Vig Vig Vi | Vig Vig V] Vi//| i, | v
Vi1 Vi Vi Vi3 Vi Via Via Vis Vis Ve Ve Vi1
0] 0 | v V V Vi, Vi, V Vig Vi Vi V V Vi
Vs Vi1 Vi1 Vi Vi Vi3 Vi3 Via Via Vis Vis Ve
TABLE 4.2
3L-NPC VSl. VOLTAGE-VECTORS SEQUENCESRELATED TO POWER REQUIREMENST
dp | dg 014 01 On 0x Osn O3
1 |11 | Ve Vit | Vi | Vi | Via | Via |
Viz2 Viz2 Viz2 Viz2 Viz2 Viz2
Vke_m Via,_| Via_m Vi | Vi Vi |
Viz0 Vizz Viz0 Vizz Viz0 Vizz
1 0 Vkl_m Vkl_m Vk2_m Vk2_m VlG_m VlG_m
Vizo Vizo Vizo Vizo Vizo Vizo
0 1 Vkl_s Vkl_s Vk2_s Vk2_s VlG_s VlG_s
Vi1 Vi1 Vi1 Vi1 Vi1 Vi1
0 0 Vkl_s Vk2_s Vk2_s VlG_s VlG_s Vk4_s
Vi1 Vi1 Vi1 Vi1 Vi1 Vi1
dp | dg Oun 048 Osp Os Os Oss
1 1 | Vial Via | Vis | Vis | Vie | Vie |
Vi1 Viz2 Viz2 Vizo Viz2 Viz2
Vs m Via | Via_m Vis | Vke_m Vie |
Viz0 Vizz Viz0 Vizz Viz0 Vizz
1 10 |Viam Vid m Vi m Vi m Vie m Vie m
Vizo Vizo Vizo Vizo Vizo Vizo
0 |1 |Vias Vid s Vis s Vis s Vi s Vi s
Vi1 Vi1 Vi1 Vi1 Vi1 Vi1
0 |0 | Vs Vis s Vis s Vig s Vig s Vi s
Vi1 Vi1 Vi1 Vi1 Vi1 Vi1
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4.2.2.2. Application Times

Taking into account the equations (4.3) and the constant switching frequency condition, the set of
equations defining the overall evolution of active and reactive powers during the control period (4.4) can
be written, see Fig. 4.1.

H:F%)-'-fpltal / Q1:Q0+fqltal
02 Lo I Q=Q+ fqz t, (4.4)
Tsw = tal + t0
The control algorithm must compute the application time t,; in such a way that controlled variables
evolve from their initial values, {Py Qo}, towards the reference values, {P, Q,}. This problem has five
equations and three variables, so an aproximative solution based on some optimization criteria must be

computed. The algorithm must minimize the active and reactive power tracking errors, which are defined
as:

HAT78B
€ = P_ref - Po' fpl Ly - fp2 (TSN - tal) @5
AT7TB
€y =Q 1o - Q- futu- fyo (TSN - tal)
In order to use aleast-square optimization method, next weight function is defined (4.6).
F= e, +e’ (49)

The optimal time of switching [t,] that minimizes the function F during a control period satisfies the
minimum value condition:
IF

—=0 @7
Tty
Solving the set of equations derived from (4.7) it is straightforward to get the next application times:

g— Tsw >t(fqz2 + fp22)+TSN >e(fp2 ><fpl + fqz qul)l]
_ & € ><fp2 i fpl)+eq0 ><fq2 B fql)
(fp2 - fpl)2 + (fqz - fql)2

O\ Cy

(4.8)

4.2.3. P-DPC based on a 2+2 Voltage-vectors Sequence

This P-DPC version deals with the symmetrical 2+2 switching pattern example where the voltage-
vectors sequence is divided in two sub-sequences of two voltage-vectors each, see Fig.4.2. The second
subsequence is symmetrical to the first one, i.e,, it employs the same voltage-vectors and application
times but reverses the application order. Thus, the last voltage vector of the first sequence matches up
with the first voltage vector of the second sequence, leading to a switching frequency minimization.
Fig.4.2 shows an example of power-trajectories concatenation under steady-state and transient operation.
As in the previous P-DPC version, in the beginning of each control period the control must select the
converter’s voltage-vectors, followed by the computation of the required application times.
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Fig.4.2: Examples of the powers performance of P-DPC strategy based on 2+2 voltage vectors sequence: a)
Steady-state behavior b) Transient behavior during an active power reference step

4.2.3.1. Voltage-vectors Selection

In the same way as the P-DPC based on a two voltage-vectors' sequence does, the use of active and
null voltage-vectors is proposed. Table 4.1 and Table 4.4 are considered for the 2L and 3L-NPC VSIs
respectively. This way, a minimum number of commutations is generated in each control period leading
to switching frequency minimization.

4.2.3.2. Application Times

In this case, the set of equations which define the overall behavior of active and reactive powers during
the control period can be written as follows.

F?L:PO+2fpltal / Q1:Qo+2fq1ta1
P, =R +2f,t, I Q=Q+f,t
T?:tal-l-to

The control algorithm must compute the application time t,; in such a way that controlled variables
evolve from their initial values, {Py Qo}, towards the reference values, {P, Q.}. This problem has aso

(4.9
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five equations and three variables. Consequently the same aproximative approach which has been
developed in 4.2.2.2 is utilized. In this case the active and reactive-power tracking errors are defined as:

A7 B .

A, 0

€, =P« - Po'2fp1ta1 pzf} ZN' alz
(4.10)

AT7B8B F 5

€ =Q_ref - Q- 2fql to - 2fq2 g?w_ ta+

Solving the optimization problem stated by (4.6) and (4.7) the following application times are obtained.

e TSN "(fqz p22)+T3N "(fpz X+ foo qul)g
t o= @+ epo ><fp2 ) eqo ><fq2 - fql) E 4.1)
o (fp2 -t fp- fuf

4.2.4. P-DPC based on a Three Voltage-vectors Sequence

The P-DPC using a three voltage-vectors seguence is based on the optimal concatenation of three
(4.3)-type tragjectories along the control period Tsy. Fig.4.3 shows an example of this control version in a
steady-state and transent operation. The P-DPC agorithm must select three of the applicable voltage
vectors and the required application times in the beginning of each control period.

4.2.4.1. Voltage-vectors Selection

The concatenation of three voltage-vectors offers an additional degree of freedom that can be used in
order to reach complementary control objectives. This way, in the 2L-VSl case, the minimization of
switching losses can be achieved following the main idea of MLV-PWM technique: the voltage vectors
sequence is chosen in such away that the switching of a VSl leg does not happen during the maximum of
line-current, leading to minimum switching losses (only two commutations per Tsy period). In the 3L-
NPC VSl case, this extra degree of freedom makes it possible to minimize the number of commutations,
to improve the power quality and to reduce the overall EMIs, in the same way that the NTV-SVM does.

The line-voltage plane is divided in a similar way as the DPC case of Chapter 3 does: six sectors of
60°, [0:.. O6] are divided in two subsectors, [Oia.. Gig], See Fig.3.7. Next, an example of vector selection
will be discussed using Fig.4.4. This figure shows the first line-voltage quadrant composed by half of the
sector 1 and the entire sector 2. The analysis carried out in this quadrant can be easily extended to any
other quadrant. As the use of the nearest voltage-vectors provides the smallest current riple, when the grid
voltage is located at any given sector, 6;, the voltage application sequence must be built by neighboring
voltage-vectors. This way, in the 2L-VS| case, the vectors sequence is built by active voltage vectors
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belonging to the set {v,, v, ,, v,,} and by one of the two null vectors, {Vo: v7} see Fig.4.4a. Conversely,

in 3L-NPC VS, the vectors sequence must be built using voltage-vectors bel onging to the set of large

I
vectors {VKI 1 Vk(l _1» Vk(|+1) I}’ medl um vectors {VKlfm’ Vk(l 1)_m? Vk(|+1)7m}’ Srna“ vectors
I 1

Ve o Vi s» Vicgany_of @ Nl vectors, {V,,v,,,v,,}, see Fig.4.4b. The gpropriate sequence in both

VSl-based configutarions will depend on the implied subsector and the switching-losses optimization
strategy. In the first sector case, for example, the next two voltage application sequences are possible in
the2L-VSl.

0, P {[\l/kl1\l/k61\l/k7]’ [\l/k11\l/k21\l/k7]} (4.12)

In asimilar way, expresion (4.13) shows the possible voltage vector’ s sequeces for 3L-NPC VSI.
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Fig.4.3: Examples of the powers performance of P-DPC strategy based on athree voltage vectors' sequence: a)
Steady-state behavior b) Transient behavior during an active power reference step
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Fig.4.4: Set of available voltage-vector son a three phase converter and mapping of the ssgmentsrelated to the
line-voltage vector location: @) 2L-VSl, b) 3L-NPC VS

DC-link Voltage Balance Requirementsin 3L-NPC VS

In the operation of 3L-NPC VS it is important to keep the required voltage-balance in DC-link
capacitors. Defining the converter’s neutral-point-voltage unbalance as e, which can be denoted as
neutral error, itstime-evolution is given by equation (4.14).

d 1 . . .
d_eO = [(Saz - Sal)la + (Soz - Sol)lb + (Scz - Scl)lc] (4.14)
t CDCZ

Here S; indicates the state of the switch number i belonging to the switching-leg x and iy, the line
current through the phase x, see Fig. 3.9. Making the same assumptions as in previous sections, a quasi-
constant neutral-error evolution can be considered. Therefore it is possible to carry out a smple
geometrical analysis of the concatenated neutral-error trgjectories. Describing the slope of the linear
evolution of the neutral-error during a voltage-vector application,

d
i = % (4.15)
dt ;.
Vk=Vi
the neutral-error at the end of the switching period is obtained:
6eaA743 (4.16)

€0 =Voc1~ Vocz - feOltal - fe02ta2 - fe03(T3N - tal - taz)

The voltage vectors are selected in order to maintain the controlled P-Q variables close to the reference
values. The fact isthat some of these voltage vectors can be obtained by different switch configurations,
implying different neutra-error evolutions. This redundancy, which is especially present in the “small
voltage-vectors’ family, provides an additiona degree of freedom and is exploited in order to minimize
the neutral-error value. The control agorithm must simply retain the redundant voltage-vector that
minimizes the neutral-error (4.16).
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4.2.4.2. Application Times

The set of equations defining the overall performance of active and reactive powers during the control
period are;

P= P+fp1ta1 / Q1=Q0+f t,
Pz + pr a2 / Qz = Ql + fqz taZ
P P + fp3 a3 / Qs :Qz + qu ta3
TSN = tal + taZ + t613
The control algorithm must compute the application times {t al,taz,ta3} in such a way that controlled

variables evolve from their initial values, {Py Qo}, towards the reference values, {Ps; Qs}. The new
problem has seven eguations and six variables, therefore an aproximative solution based on a similar
optimization criteria of the previous cases has been developed. The selected approach tries to minimize
the active and reactive power tracking errors, which are defined as.

(4.17)

AT B
€p =P - B futa - footar- fp3(TsN o i taz) (418)
6A7 B |
€ = Q_ref - QO - fqztaz f (Ts/v -t - taz)

In the same way, a least-square optimlzatlon method is used, trying to minimize the weight function
of equation (4.19).

F=e, +e, (4.19)

The optimal set of application times that minimizes the function F during a control period satisfies the
next two minimum value conditions:

I o
! T (4.20)
-
t Tt
Replacing (4.18) in (4.19) we get the weight function of the form:
F= f(tal’taZ) (4.21)
The sensitivity of this function against t;; and t,, is shown in equation (4.22).
1 dF 2 A
o — = e 2t 2t 2T Tt %zfp;sz)
"'+ B2 2t t,2f T t, Moot +2f, )=0
: 2geqo' qular 4 Tgolan™ q3g§ swbal” az;é_ ql @)=
(4.22)
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The minimum of F is reached when the values of the two sensitivity functions are equal to zero. The
resulting set of two equations and two variables can be easily computed, leading to the solution shown in
(4.23).

é(qu' qu))epo+(fp3' fpz)xeqo

u

€ a

i :@+(fq3 xfoo - fo xfpS)xTSN 9]

“ s o = Tz - i XTys 0

a

at f, ><f o faxfy+ 1, f o1
e(qu ) po (fpl' fps)’eqog (4.23)

t o[ fa Xt fxfo )Ty g

a2 N

gqu Xt - fq1 Xfoo - fg2 s U

u

é+ fql xfp3 - qu ><fpl + fq2 xfplg

ts = Tow =t~ o

4.2.5. P-DPC based on a 3+3 Voltage-vectors Sequence

This control approach employs the symmetrical 3+3 switching pattern, in such away that the voltage-
vectors' sequenceisdivided in two sub-sequences of three voltage-vectors each, see Fig.4.5. This control
strategy is an extended version of the P-DPC based on a 2+2 voltage-vector’ sequence. As shown, the
second subsequence is symmetrica to the first one (it employs the same voltage-vectors and application
times but reverses the application order), alowing the switching-frequency minimization. As previous
versions, the control must select three of the applicable voltage vectors followed by the application times
in the beginning of each control period. Fig.4.5 shows an example of power trajectories under steady-state
and trangent operations.

4.25.1. Voltage-vectors Selection

The selection of voltage vectors has been developed taking into account the same considerations
assumed for P-DPC based on a three voltage-vectors' sequence version. This way, the line-voltage plane
isdivided in six sectors of 60°, [6;.. 0], which are also divided in two subsectors, [6,a.. Oig], See Fig.3.7.
The use of the nearest voltage-vectors is considered, so when the grid voltage is located at any given
sector, 6, each voltage application subsequence is built by the neighboring voltage-vectors. In the firgt
sector case, for example, voltage vectors bel onging to the sets (4.12) and (4.13) can be employed as part of
first sub-sequence and the last sub-sequence must be symmetrical to the first one.

DC-link Voltage Balance Requirements in 3L-NPC VS

The DC-link voltage-balance is required in 3L-NPC VSl steady-state operation. As proposed in
4.24.1 it is possble to carry out a simple geometrical analysis of the concatenated neutral-error
trajectories where the neutral-error at the end of the switching period is described as:
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64748 o

€0 = Voc1 ™ Voez - 2 feOltal -2 feoztaz -2 feos‘g?wv - tal - ta2 (4.24)

Q o

Thus, the voltage vectors are sdected in order to keep the controlled P-Q variables close to the
reference values fulfilling the DC-link voltage-bal ance requirements.
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Fig.4.5: Examples of the powers' performance of P-DPC strategy based on a 3+3 voltage vectors sequence: a)
Steady-state behavior b) Transient behavior during an active power reference step

4.2.5.2. Application Times

Combining equations (4.3) with the constant switching frequency constraint, it is possible to get the set
of eguations which define the active and reactive-power behavior during the voltage-vectors sequence:

P1:P0+2fp1tal / Q1:Q0+2fqltal
F)22F1+2fp2ta2 / Q2:Q1+2fq2ta2
F%,:F)2+2fp3ta3 / Q3:Q2+2f t (429

q3 a3
T

—S =ttt
2 al a2 a3
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As in the previous P-DPC version, the control algorithm must compute the application times
{t. .t t.e} in such away that controlled variables evolve from their initial values, { Py Qo}, towards the

reference values, {P; Qgz}. Similarly, the problem has seven equations and six variables, therefore an
approximate solution based on the optimization criteria employed in 4.2.4.2 is used. The new active and
reactive-power tracking errors are defined asfollows.

A7 S8 - 5
€, = P_ref -R- 2fp1tal - 2fp2ta2 - 2fp3g?’” -ty - t,T
(4.26)
A7B o 5
€y =Q 1 - Q- 2fq1ta1 - 2fq2ta2 - 2qug?w -ty tazfﬂ
Considering (4.19) and (4.20) it is straightforward to get the next application times:
é(fQZ B fq3)>epo + (fp3 B fp2)>eqol;|
¢ oo
gl-( g3 xfpz' fq2 xfp3)x?wv E
t. =
o éfq3 xfpz - fql xfpz - fq2 ><1:p3 l;'
u
gt fql xfp3 B fq3 xfpl + fq2 xfpl
g(qu‘ } fq1)>epo + (fpl ) fp3)>eq0@ (4.27)
< T p
N (_ fq3 ><1:pl + fql xfpS) ZN E
t. =
s éfq3 xfpz - fql xfpz - fq2 ><1:p3 l;l
e u
gt fql xfp3 B fq3 xfpl + fq2 xfpl@

_TSN_

tas 2 al ~ ta2

4.3. Control System Configuration

The block diagrams of the proposed P-DPC approaches are shown in Fig.4.6. Initial line-voltage and
current values are required in order to compute initial active and reactive powers [Py, Qo]. The control
algorithm evaluates this information and the reference-power values, selects the appropriate sequence and
computes the application times which minimize the fina tracking errors. In addition, the 3L-NPC VSl
configuration considers the DC-link voltage dynamics in order to keep the required voltage-balanced in
the DC-link capacitors, see Fig.4.7.
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Fig.4.8 and Fig.4.9 show four flowcharts summarizing the main P-DPC strategies. All of them can can
exploit any of the previoudy explained voltage vectors' sequences: the simple 2 or 3 vectors sequence or
the symmetrical 2+2 or 3+3 voltage sequences.

Neasuie Meagure
deasnur
p P P C QOr P, refr Qref
Or QO; retfr Qref v —
- v : Computation
Computation
DC-Link
Balance
-Vectors’ sequence v
-Application tunes -Vectors” sequence
-Application times

v Yes v Yes

| Vector Application | [Vector Application |
I

a) b)

Fig.4.8: Smple P-DPC-based flowcharts. a) 2L-VSI, b) 3L-NPC VSI

In the beginning of each control period the active and reactive-powers are computed using
instantaneous current and voltage measures. Then, the P-DPC algorithm selects the optimum voltage
vectors sequence and the related application times (using any of the P-DPC versions), taking into
account the power tracking requirements. The selected voltage-vectors are applied during the computed
application times, completing the control period.

Hybrid P-DPC gtrategies could be also proposed, see Fig.4.9. The main idea here isto make use of a
large set of concatenated-voltage vectors only in steady state operation, improving efficiency and current
ripple. The advantages of a simple set of two concatenated-voltage vectors are exploited in transients. The
steady-state strategy employs the nearest active voltage-vectors improving the steady-state performance.
Obvioudy thisisnot the best strategy for transients, where other far active voltage-vectors would provide
faster responses. Because of this, for transients, the voltage sequence must be built by the voltage vector
which generates the fastest evolution on the desired direction, i.e., the best-oriented larger active vector,
followed by anull vector. Inthe 2L-VS], all active vectors are evaluated whereasin the 3L-NPC VS| case
only large vectors are considered. The proposed hybrid configuration will need few ps to identify whether
atrangent isrequired or not, select the best voltage-vectors' sequence and compute the application times.
Finally, the voltage-vectors will be applied during the computed application times within the control
period.
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4.4. Simulation Results

In order to verify the behavior of the proposed control algorithms, several simulations involving the
basic versions of P-DPC have been carried out. All control strategies are evaluated under steady and
transient operation conditions and results of the non-symmetrical switching patterns are compared to the
behavior of the symmetrical versions. The specifications and parameters are listed in Table 2.3 from
Chapter 2. Besides, the main control features and reguirements of proposed control strategies both in the

2L and 3L-NPC VSls are summarized in Table 4.1. All the proposed P-DPC strategies are designed in
order to operate at the same apparent switching frequency.

MAIN CHARACTERISTICS OFKS;EEASED CONTROL STRATEGIES
Version Apparent Switching Control & Sampling
Fregquency Fregquency
Two voltage-vectors sequence 1 [kHZ] 3 [kHZ]
P-DPC 2+2 voltage-vectors sequence 1 [kHZ] 3 [kHZ]
Three voltage-vectors sequence 1 [kHZ] 1.5[kHZ]
3+3 voltage-vectors sequence 1 [kHZ] 1.5 [kHZ]

44.1. Steady-state Performance
Firg simulation have been carried out considering the 2L-VSI under P-DPC using whether asimple 2

voltage-vectors sequence or a symmetrical 2+2 one. Fig.4.10 summarizes the resulting per-phase

switching pattern, normalized line current and frequency spectrum. The line current waveforms are
strongly distorted and the THD measurements are close to 14% in both cases. Therefore, the IEEE Std
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519-1992 recommendation is not fulfilled. In addition, low-frequency odd harmonics are generated in any
case. In spite of this, the absolute tracking errors are substantially small. If the non-symmetrical switching
pattern isused, it is close to 0.87% and it is around 0.32% when the symmetrical version is considered.

Theripples of both the active-power and the DC-link voltage are dightly smaller when a symmetrical
voltage-vectors sequence is used, see Fig.4.11 and Fig.4.12. In fact, non-symmetrical switching pattern-
based strategy shows active and reactive-power ripples of around 22% and 33%, whereas they fall down
to 18% and 34% when a symmetrical switching pattern is applied. When the two voltage-vectors based
P-DPC version is used the DC-link voltage ripple is around 0.23% with an RMS current across the DC
capacitor of 277A. If the symmetrical 3+3 sequence is used, the DC-link voltage ripple fall down to
0.16% and the RM S current ismaintained at 277A.

Finally, detailed behaviors of several variables are shown in Fig.4.13. As can be observed, quasi-
linear active and reactive power trajectories evolve around the reference values along three control

periods.
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In a similar way, Fig.4.14 shows the per-phase switching signals, normalized line current and
frequency spectrum of the 3L-NPC VS| with a P-DPC based on asimple 2 and symmetrical 2+2 voltage-
vectors sequences. Compared to the 2L-VSI there are not significant improvements. The low odd
harmonics have been reduced, decreasing the current THD to almost 13% in both cases. As a result, the
IEEE Std. 519-1992 is not fulfilled, leading to the conclusion that these P-DPC versions are not
appropriate to generate a good current quality under the required specifications. The absolute tracking
errorsare 0.73% for the single sequence version and 0.33% for the symmetrica case.

The power and DC-link-voltage ripples are also dightly improved under the symmetrical switching
pattern against the non-symmetrical P-DPC version, see Fig.4.15 and Fig.4.16. In thefirst case, the active
and reactive-power ripple values are around 22% and 36% respectively. In the case of the symmetrical
2+2 version, these values fall down to 15% and 33%. Analyzing the DC-link behavior, the non-
symmetrical P-DPC dtrategy establishes a voltage ripple of 0.23% with an RMS current across the
capacitors of around 240A. On the other hand, the symmetrical version provides alower voltage ripple of
0.17% and the same RMS current of 239A. It is important to note that both control approaches show a
perturbation in the voltage of DC-link capacitors located at the typical frequency of 150Hz which is
characteristic of three-level converters with some kind of SVM. The behavior of these P-DPC versions
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along three control periods is shown in Fig.4.17. In a similar way to previous strategies, quas-linear
trajectories evolve around the reference values.
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Fig.4.17: 3L-NPC V3. Switching signals and active and reactive power trajectoriesalong three control
periods: a) P-DPC based on atwo voltage-vectors' sequence, b) P-DPC based on a 2+2 voltage-vectors
sequence

Fig.4.18 shows the per-phase switching signals, line current and frequency spectrum related to the 2L-
VSl with P-DPC strategies using both a smple three voltage-vectors sequence and a symmetrical 3+3
one. It can be observed that there are no switching actions along the maximum of the line current in these
versions, thus improving the converter’s power-losses. When the simple sequence is used, a considerable
current ripple is observed, which implies a high harmonic content (THD;=14%). On the other hand, if the
symmetrical version is used the harmonic spectrum and THD are substantially reduced (THDIi=7.6%),
see Fig.4.18b. In this case, better current quality than previous versions can be obtained, but the IEEE
Std. 519-1992 recommendation is not yet fulfilled. The absolute tracking errors are around 0.86% and
0.46% in the non-symmetrical and symmetrical P-DPC versions respectively. The improvement using the
symmetrical-based P-DPC version can be clearly observed in the power and DC-link voltage-ripple
performance, see Fig.4.19 and Fig.4.20. Hence, the non-symmetrical switching pattern-based P-DPC
version shows active and reactive power ripple values close to 25% and 21%. The symmetrical version
becomes the most interesting alternative (AP=14%, AQ=12%). In a similar way, from the point of view of
the DC-link, the symmetrical version shows the best solution (Avpc=0.12%,|Cocrms=275A) againg the
non-symmetrical technique (Avpc=0.28%, ICocrmg=281A). The switching pattern of both control
strategies can be easily derived from active and reactive power trajectories which are shown in Fig.4.21.
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Fig.4.18: 2L-VSI. Phase switching signals, normalized line current and frequency spectrum: a) P-DPC based
on athree voltage-vectors sequence, b) P-DPC based on a 3+3 voltage-vectors sequence
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Finally, Fig.4.22 shows the resulting per-phase switching pattern, normalized line current and
frequency spectrum for the 3L-NPC VS| under P-DPC versons based on simple 3 and symmetrical 3+3
voltage-vectors segquence. As well as the last control agorithms, there are no switching actions during
the line-current maximum, leading to minimum switching losses in the VSI. The THD measurements do
not fulfill the IEEE Std. 519-1992 in the non-symmetrical P-DPC strategy (THDi= 7.7%). However, the
symmetrical version meets this recommendation with a current THD of around 4.24%. This improvement
involves frequency spectrum, power behavior and DC-link voltage ripple performances, see Fig.4.23 and
Fig.4.24. This way, the active and reactive power ripples are reduced respectively from 14% and 9.81%
for the Smple sequence case to 7.35% and 5.42% for the symmetrical sequence case. Similarly, the DC-
link voltage ripple decreases from 0.21% to 0.07% and the RMS current is kept at almost the same level
(275A against 270A).

The absolute tracking error is near 0.74% in the non-symmetrical P-DPC strategy and close to 0.46%
under its symmetrical version. Detailed behaviors of the relevant variables during three control periods
are shown in Fig.4.25.

It should be noted that the non-symmetrical switching pattern produces a substantial disturbancein the
line current maximum in steady state operation. This is a collateral effect related to the vectors

application sequence, also see Fig.4.18 and Fig.4.22.
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4.4.2. Transient Performance

Active power steps from 1.4AMW to 2MW have been applied (power variations of 30%). Only active
power changes are analyzed, though similar results can be obtained if reactive power steps are considered.
Fig.4.26 shows the instantaneous active and reactive power behavior, involving the non-symmetrica and
symmetrical two vectors-based P-PDC versions, when several active power reference steps are applied to
the 2L-VSl. A fast trangent response without overshoot and cross-coupling effect between variables is
observed. Fig.4.27 shows the detail of the transient behavior. Considering a band of 10% of the nominal
power, both P-DPC versions provide a setting time and rise time below 3ms. It can be concluded that both
strategies provide the same dynamic performance. This equivalent behavior is due to the fact that both
control strategies are under saturation during transients, i.e., the null vector is not applied and al the
switching period is assigned to the same active vector, leading to the same transient evolution.
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Several smulations of the 3L-NPC VSl under P-DPC based on simple 2 and symmetrical 2+2
voltage-vectors sequences have been carried out, see Fig.4.28 and Fig.4.29. As well as previous
strategies, afast trangent performance without overshoot and cross-coupling effects is observed. Therise
time and setting time are around 4msin both control algorithms.

Fig.4.30 describes the behavior of the active and reactive-power of the 2L-V Sl during several active-
power steps under P-DPC based on a simple 3 and symmetrical 3+3 switching patterns. The dynamic
performance is similar in both techniques because the transient requirement leads to saturation of the
control in such a way that the same voltage-vector is used along the entire switching period. Thereis no
overshoot or cross-coupling effect, resulting on arise time and setting time below 3ms. Similar results are
obtained when the 3L-NPC VSl is considered, see Fig.4.32 and Fig.4.33.
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4.5. Conclusions

This Chapter has proposed a new predictive-type control agorithm based on the direct power control
strategy, the P-DPC. Thanks to this new approach a constant-switching-frequency operation is obtained
keeping the fast dynamic response related to direct control strategies. Different P-DPC versions, based on
different voltage vectors sequences, have been proposed and evaluated: simple 2 or 3 vectors' sequence
and symmetrical 2+2 or 3+3 voltage vectors sequences. Results have shown that the P-DPC could
become an interesting alternative to MV grid-connected converters.

Table 4.2 and Table 4.3 show the simulation results along with the characterigtics and requirements of
each P-DPC version for the 2L-VSl and 3L-NPC VSl configurations. The results indicate that the
symmetrical 3+3 switching-pattern establishes the best P-DPC version both in the 2L-VSl and 3L-NPC
VS configurations. Nevertheless, only the 3L-NPC VS| meets the IEEE Std 519-1992 recommendation
which makes it an attractive choice for MV and high power applications,

TABLE 4.2
FEATURES AND REQUIREMENST OF P-DPC STRATEGIES FOR 2L-VS|
Features P-DPC based on two vectors P-DPC based on three vectors
Non-symmetrical | 2+2 Symmetrical | Non-symmetrical | 3+3 Symmetrical
switching pattern | switching pattern | switching pattern | switching pattern
Switching Constant Constant Constant Constant
Frequmcy fSNMAX =3 kHz fSNMAX =3 kHz fSNMAX =15 kHz fSNMAX =15 kHz
ngNzlkHZ ngNzlkHZ ngNzlkHZ ngNzlkHZ
Control & TSN=1/ fSNMAX TSN=1/ fSNMAX TSN=1/ fSNMAX TSN=1/ fSNMAX
Sampling Period
Modulation - - - -
Technique
Current 14.75% 13.95% 13.85% 7.6%
ot THD
g Tracking Error 0.87% 0.32% 0.86% 0.64%
2] Power Ripple AP (21.88%) AP (18.32%) AP (24.93%) AP (13.72%)
8 AQ (33.44%) AQ (33.74%) AQ (20.88%) AQ (11.86%)
| DC-link Ripple Avpc (0.23%) Avpc (0.16%) Avpc (0.28%) Avpc (0.12%)
ICocrms(277.11A) ICocrms(276.42A) ICocrms(281.29A) ICocrms(273.71A)
Cross-coupling - - - -
- Effect
.é Dynamic Setting time (<3ms) | Settingtime (<3ms) | Setting time (<3ms) | Setting time (<3ms)
= Performance Risetime (<3ms) Risetime (<3ms) Risetime (<3ms) Risetime (<3ms)
= Overshoot (-) Overshoot (-) Overshoot (-) Overshoot (-)
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TABLE 4.3
FEATURES AND REQUIREMENST OF P-DPC STRATEGIES FOR 3L-NPC VS|
Features P-DPC based on two vectors P-DPC based on thr ee vectors
Non-symmetrical | 2+2 Symmetrical | Non-symmetrical | 3+3 Symmetrical
switching pattern | switching pattern | switching pattern | switching pattern
Switching Constant Constant Constant Constant
Frequmcy fSNMAX =3 kHz fSNMAX =3 kHz fSNMAX =15 kHz fSNMAX =15 kHz
ngNzlkHZ ngNzlkHZ ngNzlkHZ ngNzlkHZ
Control & TSN=1/ fSNMAX TSN=1/ fSNMAX TSN=1/ fSNMAX TSN=1/ fSNMAX
Sampling Period
Modulation - - -
Technique
Current 13.59% 12.67% 7.7% 4.24%
ot THD
% Tracking Error 0.73% 0.26% 0.74% 0.46%
2] Power Ripple AP (21.75%) AP (15.23%) AP (13.95%) AP (7.35%)
8 AQ (36.42%) AQ (33.34%) AQ (9.81%) AQ (5.42%)
3| DC-link Ripple Avpc (0.23%) Avpc (0.17%) Avpc (0.21%) Avpc (0.07%)
ICocrms(277.43A) ICocrms(276.95A) ICocrms(275.50A) ICpcrms(270.13A)

Cross-coupling
Effect

Dynamic
Performance

Transent

Setting time (<4ms)
Risetime (<4ms)
Overshoot (-)

Setting time (<4ms)
Risetime (<4ms)
Overshoot (-)

Setting time (<3ms)
Risetime (<3ms)
Overshoot (-)

Setting time (<3ms)
Risetime (<3ms)
Overshoot (-)







Chapter 5

5.Control Operation Performance

5.1. Introduction

It isimportant to know the behavior of any control agorithm when several non-considered rea -world
phenomena are present, e.g. a non accurate estimation of parameters. In the same way, the control
strategies proposed in this dissertation must face up to regulation tasks which are mainly required by two
types of disturbances: line-voltage harmonics and sags.

Firgly, this chapter summarizes the non-perturbed performances of the proposed control algorithms.
Secondly, it is studied the operation of the proposed control strategies under balanced inductance-drifts.
Finally, the behavior of the control algorithms during disturbed conditionsis analyzed. This last featureis
commonly denoted as the regulation capability.

5.2. Features and Specifications of the Control Operation Performance

Table 5.1 compares the main features and specifications of the most interesting control algorithms
developed and anayzed in Chapter 3 and Chapter 4. As can be observed, all control strategies operate at
the same switching frequency, with identica control and sample periods. Therefore, a coherent
comparative frame can be considered and different conclusions are derived.

For a given converter, all the control strategies show almost the same current THD levels, near 8% in
the 2L-V Sl and around 4.25% in the 3L-NPC VSI. However, the power and DC-voltage ripples are lower
in the P-DPC case and the absolute current tracking error is smaler when VOC-based strategies are
utilized. These results are coherent with the fact that the main aim of the P-DPC isto minimize the active
and reactive power error, whereas the minimization of current error is considered in the VOC-type
strategies.

The transient behavior shows a d-q cross-coupling effect between control variables when VOC
techniques are used. The design characteristics of the P-DPC algorithm make it non susceptible toward
this effect. Anyway, the best P-DPC results, as expected, are obtained in the dynamic performances. It is
clearly faster in the power tracking task in both configurations, as it takes|less than 3ms instead of around
16msrequired by the VOC strategies. Furthermore, the P-DPCs establish the fastest rise time below 3ms
without overshoot, whereas the VOCs employs around 8mswith considerable overshoot. Thereforeit can
be said that the P-DPC is an attractive choice for MV grid-connected applications.
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TABLE 5.1
FEATURES AND SPECIFICATIONS
Features 2L-VS 3L-NPC VS
VOC with P-DPC based on VOC with P-DPC based on
MLV-PWM a symmetrical NTV-SVM a symmetrical
3+3 switching 3+3 switching
pattern pattern
Switching Frequency Constant Constant Constant Constant
fSNMAX =15 kHz fSNMAX =15 kHz fSNMAX =15 kHz fSNMAX =15 kHz
ngNzlkHZ ngNzlkHZ ngNzlkHZ ngNzlkHZ
Control & Sampllng TSN=1/ fSNMAX TSN=1/ fSNMAX TSN=1/ fSNMAX TSN=1/ fSNMAX
Period
Modulation MLV-PWM - NTV-SVM -
Technique
Current 8% 7.6% 4.26% 4.24%
o THD
® Tracking 0.36% 0.64% 0.37% 0.46%
E Error
S | Power Ripple AP (12.37%) AP (13.72%) AP (9.15%) AP (7.35%)
8 AQ (14.96%) AQ (11.86%) AQ (8.27%) AQ (5.42%)
7 DC-link AVpc (0.14%) Avpc (0.12%) Avpc (0.11%) Avpc (0.07%)
Ri ppl e | CDCRMS(27456A) | CDCRMS(27371A) | CDCRMS(272-34) | CDCRMS(27O- 13A)
Cross Yes - Yes -
coupling
§ Effect
§0) Dynamic Setting time (<16ms) | Setting time (<3ms) | Setting time (<15ms) | Setting time (<3ms)
® Performance Risetime (<8ms) Risetime (<3ms) Risetime (<8ms) Risetime (<3ms)
= Overshoot (~5%) Overshoot (-) Overshoot (~8%) Overshoot (-)
5.3. Filter' sInductance Variations

The line-filter’s inductance variations could affect the performance of the grid-connected converter
[13;43]. The VOC-based strategies are reasonably insengitive to these variations that only affect the
current’s spatial-orientation related to the line-voltage phase estimation. Therefore, an influence in the
power factor can be induced but it isusualy corrected by the current control loop. On the other hand, the
P-DPC is amode based control method, so its mathematical approach is based on the knowledge of the
system’ s parameters, becoming sensitive to parameter drifts. A deviation in the filter’s inductance could
damage the stability of the control system. Fig.5.1 and Fig.5.2 show the absolute line current tracking
error and the influence on THD when atypical derivation of 10% in the filter’ sinductance is produced.

As can be observed, a deviation in the inductance produces small errorsin the power tracking when
VOC-based techniques are employed. The deviation of 10% in the inductance value will imply an
absolute power tracking error below 1% both in the 2L-VSl and in the 3L-NPC VSI, which does not
damage the stability of the control system performance. Yet, it can produce significant variationsin THD
measurements under the 3L-NPC VSI, which implies that this configuration is very senditive to filter's

inductance variations.
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5.4. Power Quality Disturbances

Theideal characteristics of power energy in the generation point can be modified during the transport
and distribution operations or by the customers [12;14;15;113-116]. The drift of any ideal grid parameter
is denoted as electrical disturbance. Under ideal conditions the VSIs should provide sinusoidal line
currents but a distorted grid voltage can induce a negative effect in the converter’s performance. It is so
interesting to eval uate the influence of these perturbations on the proposed control agorithms
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54.1. Influence of Line-voltage Harmonics

In anideal situation, the grid usually consists of a balanced three-phase power system with sinusoidal
line voltage-waves. However, the line voltage is frequently distorted and the systems which are connected
to the grid should be able to tolerate this situation [43;117;117-119]. One of the main disturbancesis the
presence of line voltage harmonics of order 5, 7 and 11. Fig.5.3 shows the influence in the proposed
control algorithms when a balanced 5™ voltage of 10% appears. The VOC-based strategies usually
employ a PLL in order to obtain the line voltage phase position, so these control techniques show a good
performance against line voltage harmonics, see Fig.5.3a. On the other hand, the P-DPC is based on the

instantaneous line voltage phase estimation and the disturbances affect the control performance directly,
see Fig.5.3b.
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Fig.5.3: Influencein the control algorithm when a 10% of 5" voltage har monicis applied: a) VOC-based
strategies, b) P-DPC-based strategies

Fig.5.4, Fig.5.5 and Fig.5.6 show several current THD values, both in the 2L and 3L-NPC VS
configurations, in presence of different magnitudes of 5", 7™, and 11™ line voltage harmonics. These
figures describe a generalized trend which implies an increase of current-THD according to the

magnitude of line-voltage harmonic. As expected, the P-DPC-based algorithms have a higher sensitivity
to these disturbances.
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54.2. Influence of Line-voltage Sags

The voltage sag could be defined as a strong drop in line-voltage (between 10% and 90% of nominal
value) during a short period of time which is usually established between 10ms and 1min. These kind of
disturbances are typically originated by short-circuits and grid connection/disconnection of large loads
(transformers, motors and others) within the distribution power system [12;13;120-122]. An interesting
classification of line voltage sags has been recently presented in [13]. This dissertation discusses the
results of several grid measurements in the distribution power systems which have been carried out by a
Spanish utility company between 1997 and 2000. As a result, it could be derived that around 80% of grid
faults are related to voltage sags below 50% and lasting less than 200ms. Fig.5.7 shows the main
characteristics of some of the most common line-voltage sags which can be generated in the eectrical
power system. Thus, the A case represents a balanced three-phase voltage sag. The B case showsasingle-

phase voltage sag and C and D cases describe different two-phase voltage-sags. Here, \'/ is the perturbed
line-voltage whereas F is used for non-perturbed phase.
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Fig.5.7: Phasor-diagram-based classfication of line voltage sags (p.u)

From the point of view of the proposed VOC drategies, the voltage sag induces a disturbance in the
current loop which tends to evolve toward the new current requirements which are established by the DC
regulation loop. In the P-DPC algorithm, the line voltage sag directly leads to a proportional increase of
line current in order to keep the power regquirements constant. Fig.5.8 shows the line-phase estimation of
the VOC and P-DPC algorithms in the presence of a three-phase voltage sag (type A) between 0.52s and
0.58s. Both control algorithms show a similar behavior which is coherent with the fact that the three-

phase balance is kept during the voltage drop.
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Fig.5.8: Influence of a three-phase voltage sag in the control algorithm (V=40%): a) VOC-based strategies, b)
P-DPC-based strategies

Fig.5.9 shows severa current THD measurements in presence of different magnitudes of three-phase
voltage sags. These results are obtained keeping the power reference during the disturbed conditions. Asa
result, an increase in the magnitude of line voltage sag involves larger line currents, which decreases the
current THD. The VOC-based strategies follow this trend, but substantial voltage sags has an effect on
the performance of the VSI when the P-DPC is employed. In fact, voltage-sags over 35% increase the
THD levels on the 2L-VSl in relation to the VOC strategy, whereas this limit falls down to 20% on the
3L-NPC VS case. Therefore, the P-DPC-based algorithms are sensitive to three-phase voltage sags,
becoming the 3L-NPC VS| the weakest configuration.
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Fig.5.9: Current THD measurementsin presence of different three-phasevoltage sags. a) 2L-VSl, b) 3L-NPC
VSl

Fig.5.10 describes the influence of a single-phase voltage sag (type B) between 0.52s and 0.8s. It is
interesting to observe that the zero sequence of the static reference frame vy shows a significant variation
during the perturbed conditions. However, the PLL system keeps the line phase estimation free of
perturbations in the VOC drategies in such a way that the control variables can operate under an
undisturbed reference. On the other hand, the line voltage sag clearly affects the P-DPC agorithm,
leading to instantaneous grid phase deviation.
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Fig.5.10: Influence of a one-phase voltage sag in the control algorithm (V=40%): a) VOC-based strategies, b)
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In the same way as in the three-phase voltage sag analysis, it is possible to compute the current THD
values when different single-phase voltage sags are applied, see Fig.5.11. The results of the 2L-V S| show
that the P-DPC is more sensitive than the VOC drategy in the presence of one-phase voltage sags.
Nevertheess, this results differs in the 3L-NPC VSl case, where very sensitive behavior is observed
under both control agorithms.
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Fig.5.11: Current THD measurementsin presence of different one-phasevoltage sags. a) 2L-VSl, b) 3L-NPC

VSl

Finally, the influence of the two-phase voltage sags is shown in Fig.5.12 and Fig.5.13. These results
are related to C and D-type voltage sags which are described in Fig.5.7. The control performance is
similar to the one-phase voltage sag disturbance situation, where unbalanced operation conditions are
produced. Similarly to the previous cases, the PLL system keeps the line-phase estimation free of
perturbations in the VOC strategies, whereas instantaneous variations are observed in the P-DPC
algorithm.
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Fig.5.13: Influence of atwo-phase voltage sag (type D) in the control algorithm (V=40%, F=10%): a) VOC-
based gtrategies, b) P-DPC-based strategies

In order to show the influence of the two-phase voltage sags under the 2L and 3L-NPC VSls several

THD measurements under different voltage-sag conditions have been carried out. Fig.5.14 and Fig.5.15
show two situations related to different voltage drops in the non-affected grid-phase (F=10% and F=20%)
for a C-type voltage sag. In a similar way, Fig.5.16 and Fig.5.17 describe the systems' behavior related to
the same voltage drops in the non affected grid-phase for a D-type voltage sag. In the 2L-V S, the current
THD of the P-DPC case increases faster than in the VOC case when the magnitude of voltage sags moves
away from the balanced situation. In the 3L-NPC VSl case, both control agorithms show a similar
behavior with high variations in the systems performance. As a result, the P-DPC algorithm is more
sensitive than the VOC in the 2L-V S| case but the 3L-NPC VS| becomes a vulnerable configuration for
both control strategies.
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5.5. Conclusions

A performance comparison between the previoudy selected control algorithms for MV grid-connected
2L and 3L-NPC VSIs has been carried out in this Chapter. Thus, VOC-type strategies based on MLV-
PWM and NTV-SVM are compared with the P-DPC strategy based on symmetrical 3+3 voltage vectors
sequence. Furthermore, several important operation cases such as the influence of the filter’s inductance
deviations and some grid disturbances are discussed.

The control performance comparison shows that the P-DPC is an interesting alternative to standard
VOC techniques for grid-connected converters. It shows high transent capabilities with a comparable
power quality toward VOC dtrategies in the steady-state performance under a constant switching
frequency. Nevertheless, it has been shown that the filter’s inductance drifts of around 10% could affect
the current tracking error. In spite of this, this value is established below 1% and it does not damage the
stability of the control system in the 2L-VSI configuration. However, the 3L-NPC VS| is very sensitive to
filter’ s parameter drifts whatever control is used.

The analysis of the influence of line voltage harmonics shows that P-DPC algorithms are considerably
affected as harmonics magnitude and frequency levels increase. In a similar way, the P-DPC is very
sensitive to the voltage sags. The VOC techniques are also affected by these perturbations and especially
in the 3L-NPC VSl configuration when unbalanced operation conditions are produced.






Chapter 6

6. Experimental Results

6.1. Introduction

Experimenta tests have been carried out in order to validate the proposed P-DPC algorithm. Three
laboratory set-ups have been utilized: two different 2L-VSIs and one 3L-NPC VSI. Asthe laboratory set-
ups are not high-power devices, none of them has a parameter’s set similar to that resulting from the
design considerations of Chapter 3. Because of that, data obtained from experimenta tests will be
compared with data derived from new simulations related to the new laboratory VSIs. The 3+3 vector’s
sequence and the hybrid version have been employed on the experimenta test of the P-DPC.

6.2. Laboratory Set-ups

On the one hand, some of the experiments have been carried out at the Inditute of Control &
Industrial Electronics from Warsaw University of Technology (Poland). These experiments are related to
a2L-VSl operating as arectifier. On the other hand, other experiments have been achieved at the Power
Electronics Laboratory at the Faculty of Engineering of the University of Mondragon (Spain). These
experiments compare the behavior of 2L and 3L-NPC VSl when different control strategies asthe P-DPC
and VOC-ones are used.

6.2.1. The 2L-V SI Operating as a Rectifier under the P-DPC

The experimentd platform conssts of a commercial three-phase inverter controlled by a dSPACE
ds1103 real time platform, a line inductor of 10mH, a DC-link capacitor of 470uF and aresistor of 100Q
as passive load, see Fig.6.1. The main parameters of the power and control systems arelisted in Table 6.1.

sk FsIK Fs

| DCSde ! 2L-Vs E
i + i
! Voc | 1S SOJ &J :
R ;@ " i
= |7 e

Fig.6.1: Electrical diagram. Laboratory platform of three-phase 2L-VSl with a L-typefilter under rectifier
operation mode
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TABLE 6.1
SPECIFICATIONS OF POWER AND CONTROL SYSTEMS
Value [unit]

Rated Power 25[kW]
Rated line-to-line Voltage (RM S) 260 [V]
Filter L=10 [mH] R=100[m€Q]
DC Link (Cpc) 470 [F)
Resistive L oad R =100[€Q]

P-DPC based on 3+3 voltage vectors' sequence
Switching Frequency (maximum) famax=7500[HZ]
Control & Sample Tav=1/ fammax

As shown in Chapter 3, in the beginning of each control period the P-DPC algorithm computes active
and reactive powers based on the instantaneous current and voltage measures. Next, it selects the optimal
voltage vectors sequence and the related application times, taking into account the power tracking
requirements. The control task takes few ps, which are negligible againg the control period. After this
short delay time, the sdlected voltage vectors are applied during the computed application times,
completing the control period. The control algorithm (instantaneous power derivation, vectors sequence
selection and computing of the application times) runs under an integrated ControlDesk program in a
dSPACE dsl1103 real time platform. As the space vector modulation facility of this platform is not
flexible enough, the desired switching patterns are “coded” using scalar PWM facilities. The desired
actual voltage-vector sequence is finally generated “decoding” these standard PWM outputs by
combinatory logic circuits. The measurement system is based on a TEKTRONIX TDS3014 100MHz
oscilloscope and a grid analyzer NORMA D6000 (Goerz Instruments).

Initial steady-state tests have been carried out on a 2L-V S| operating at 150V/2kW. Fig.6.2 shows the
simulated and experimental per-phase grid-voltage, line-current and the converter’ s voltage related to the
negative point of the DC-link. Asit can be derived, there are no switching actions along the maximum of
the line current, minimizing the overall switching losses.

il
P-DPC " o . I

Phase voltage [p.u]

Phase current [p.u]

Switching signals
-

. L T L . n .
046 0.465 047 0.475 048 0.485 0.49 0495 05
Time (s)

a) b) A_.__._

Fig.6.2: @) Smulated per-phase grid voltage, line current and converter’s per-phase switching signals under
normalized values (p.u), b) Experimental per-phase grid voltage, line current and per-phase converter’'s
voltage related to negative point of the DC-link

Oscilloscope: From the top grid voltage 250V/div, line current 5A/div and converter’ s voltage 400V/div (time division of 4ms)
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This efficiency improvement isrelated to current spectrum-deterioration, asit will be shown next. The
grid-voltage and current-frequency spectrum are computed taking into account the average value over 16
grid periods, see Fig.6.3and Fig.6.4. The current THD measurements show a very good power quality
(THD;=2.87%), whereas a deterioration of the grid-voltage is observed (THD,=2.71%). In spite of this,
the overall behavior meets the |EEE Std 519-1992 recommendation.

fU1 49,988 Hz average over 16 periods
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Fig.6.3: Experimental current frequency spectrum
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Fig.6.4: Experimental voltage frequency spectrum

Very good results are also obtained in transient behavior, see Fig.6.5. Active power reference steps
from 1.5kW to 2.5kW have been applied. As can be observed on Fig.6.6, the P-DPC transient takes
around 400us without overshoot and a negligible cross-coupling effect. The behavior of the line-current
and converter’ s voltage rel ated to the negative point of the DC-link are shown in Fig.6.7.
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Fig.6.5: I nstantaneous active and reactive power behaviors during active reference steps: a) Smulated Results
(normalized values), b) Experimental results

Oscilloscope: From the top reference & active power 500W/div and reference & reactive power 200W/div (time division of 10ms)
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Oscilloscope: From the top reference & active power 500W/div and reference & reactive power 200W/div (time division of 400us)
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Fig.6.7: @) Smulated per-phase grid voltage, line current and converter’s per-phase switching signals under

normalized values, b) Experimental per-phase grid voltage, line current and per-phase converter’s voltage
related to negative point of the DC-link

Oscilloscope: From the top grid voltage 250V/div, line current 5A/div and converter’ s voltage 400V/div (time division of 10ms)

6.2.2. Comparative Study of the P-DPC and the VOC Strategies on a 2L-V S|
Operating as an Inverter

The symmetrical 3+3 vectors sequence version of the P-DPC and VOC drategies have been
compared on a grid-connected three-phase VS| operating at 400V-15kVA. The experimental platform
consists of a commercia three-phase inverter SKITPPACT (SEMIKRON), a line inductor of 10mH, a

DC-link capacitor of 5mF and a DC supply source, see Fig.6.8. The main specifications of power and
control systems are listed in Table 6.2.
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Fig.6.8: Electrical diagram. Laboratory platform of three-phase 2L-VSl with a L-typefilter under rectifier
operation mode

TABLE 6.2
SPECIFICATIONS OF POWER AND CONTROL SYSTEMS
Value [unit]
Rated Power 15 [kVA] cost=0.8 (inductive)
Rated line-to-line Voltage (RM S) 400 [V]
Filter L=10 [mH] R=100[m€Q]
DC Link (Cpc) 5[mF] /700 V

VOC with SV-PWM /VOC with MLV-PWM/ P-DPC based on 3+3 voltage vectors' sequence

Switching Frequency (maximum) famax=2000[HZ]
Control & Sample T~ fsumax

The control algorithms run under the SSIMULINK/MATLAB environment in a dSPACE ds1103 real-
time platform and the measurement system is based on a YOKOGAWA PZ4000 with a sample time of
2.5MS/s. The tuning of VOC-based controllers is based on the OS method (without prefilter), getting a
first order dynamic behavior.

Firg, Fig.6.9 shows simulated per-phase switching signals and normalized per-phase current. Next,
Fig.6.10 shows experimental per-phase converter’s voltage related to negative point of DC-link and the
line current. In the case of MLV-PWM and P-DPC there are no switching actions a ong the maximum of
the line-current, therefore the overall switching losses are minimized. However, the efficiency
improvement isrelated to current-spectrum deterioration, see Fig.6.11. The VOC-type SV-PWM strategy
shows the best power quality (THD;=4.10%), followed by the P-DPC (THD;=4.84%) and the VOC-based
MLV-PWM (THD;=4.86%). As can be derived, both the P-DPC and MLV-PWM approaches minimize
the switching losses with the same vector selection strategy, which leads naturally to a similar THD
degradation. This THD penalization is an expected result considering that some degrees of freedom are
not used in current control tasks. Neverthdess all strategies meet the IEEE Std 519-1992
recommendation.
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Fig.6.11: Experimental current frequency spectrum

Detailed behavior of simulated variables under P-DPC is shown in Fig.6.12a In a similar way,
Fig.6.12b reflects the experimental results of active and reactive power trgjectories of two symmetrical
3+3 switching sequences. Two control periods are represented. As can be observed, quasi-linear active
and reactive power trajectories evolve around the reference values, with aripple of around 5%.
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Fig.6.12: Active and reactive power trajectoriesalong two control periods: a) Smulated Results (Nor malized
values), b) Experimental results

The best P-DPC result is obtained, as expected, in transient behavior, see Fig.6.13. Two steps of
active and reactive power references from zero to 15kW and 9kVAr have been applied. Though the P-
DPC offers a dight improvement on reactive power trandent, it is clearly faster in the active power
tracking task, as it takes less than 5ms againgt the 60ms required by either of the two VOC strategies.

Fig.6.14 shows the experimental transient behaviors of active power and line current when an active-
power reference step is applied at 0.08s. As can be observed the P-DPC transient takes only 5ms whereas
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the VOC-based strategies need around 60ms to achieve the same transient. Logically, better transent
responses in VOC can be obtained if current controllers design is optimized using a prefilter and feed-
forwards loops (Chapter 3). This field has been developed in the experimental tests related to 3L-NPC
VSl.
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6.2.3. Comparative Study of the P-DPC and the VOC Strategy on a 3L-NPC
VS| Operating as an Inverter

A comparison between the hybrid P-DPC and VOC strategies has also been carried out in a 3L-NPC
VSl under 400V-15kVA operation conditions. The experimental platform consists of a three-level NPC
inverter developed by SEDECAL and located at Faculty of Engineering of the University of Mondragon.
Furthermore, a line inductor of 10mH, DC-link capacitors of 1.16mF each and a DC-supply are
employed, see Fig.6.16. The main specifications of power and control systems are listed in Table 6.3.
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Fig.6.16: Electrical diagram. Laboratory platform of three-phase 3L-NPC VS| with a L-type filter under
rectifier operation mode
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TABLE 6.3

SPECIFICATIONS OF POWER AND CONTROL SYSTEMS
Value [unit]
Rated Power S« 15 [kVA] cos8=0.8 (inductive)
Rated line-to-line Voltage (RM S) 400 [V]
Filter L=10 [mH] R=100[m€Q]
DC Link (Cpc1, Coc2) 1.16[mF] / 700V

VOC with NTV-SVM / Hybrid P-DPC

Switching Frequency (maximum) famax=2000[HZ]
Control & Sample T~ fsumax

As the previous case, the control algorithms run under the SIMULINK/MATLAB environment in a
dSPACE dsl1103 real time platform and the measurement system is based on a YOKOGAWA PZ4000
(sample time of 2.5MS/s) and Tektronix TPS 2024 200MHz. In order to generate the switching patterns
the FPGA platform SPARTAN 3 isused. The tuning of the VOC-based controllers has been based on the
OS method using a prefilter.

Fig.6.17 compares the simulated per-phase switching signals and normalized line-current of the VOC
with NTV-SVM and the P-DPC dtrategy. In a similar way, Fig.6.18 shows experimenta per-phase
converter’s voltage related to the neutral point of the DC-link and the line current. As can be observed
there are no switching actions along the maximum of the line current, therefore the overall switching
losses are minimized. The steady state is evaluated by THD measurements, see Fig.6.19. Both drategies
present similar harmonic spectrum levels, near 2.4%, meeting the |EEE Std 519-1992 recommendation.

The P-DPC behavior along two control periodsis shown in Fig.6.20. As can be observed, quasi-linear
trajectories evolve around the reference values both in the simulation and experimental cases, with a
ripple below 3%. Fig.6.21a outlines the evolution of the DC-link voltages and the neutral-error under P-
DPC operation. The main harmonic is located at 150Hz, the typical characteristic of three-level
converters with some kinds of SVMs. Fig.6.21b shows the experimental DC-capacitors voltages ripples
and line currents behavior under severa active reference steps from 5kW to 10kW. It should be noted that
the low frequency harmonic of around 5Hz under the DC-link voltagesisrdated to the DC supply which
has been used in the experimentation.
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Fig.6.17: Smulated results of per-phase switching signals and normalized line current: @) VOC with NTV-
SVM, b) P-DPC
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Finally, smulation and experimental results of the active and reactive power transient behavior under
several reference steps from 10.5kW to 15kW (30%Sk) are shown in the following figures. The PI
controllers of the VOC strategy (based on Park’s dq Transformation) are tuned using optimal approaches,
leading to a fast trangent response of around 20ms. Howeveyr, it is possible to observe an overshoot and
the dg cross-coupling effect. On the other hand, the P-DPC strategy shows an improved transient
behavior, obtaining a fast dynamic response below 4ms without any overshoot or cross-coupling effects.
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6.3. Conclusions

In order to verify the behavior of the P-DPC algorithm, severa simulations and experimental testsin
different laboratory set-ups have been carried out. Concretely, this chapter evaluates both the symmetrical
3+3 vector’s sequence and the hybrid version of P-DPC along with VOC strategies in a grid-connected
2L and 3L-NPC VSls.

The P-DPC shows very good results both in steady-state and trangents. The comparative study
between standard VOC strategies with SV-PWM and MLV-PWM in the 2L-V S| establish that the P-DPC
(based on symmetrical 3+3 vectors sequence version) is severa times faster in power transents. It offers
the same power loss reduction in the steady-state as the MLV-PWM and therefore, the resulting THD is
also pendized. In a similar way, the comparison between the VOC with NTV-SVM and the P-DPC
(hybrid version) in the 3L-NPC VSl shows a similar harmonic spectrum levels in steady-state operation
but improving the transient behavior.

These results are coherent with the fact that P-DPC strategies exploit the same set of voltage-vectors
in steady-state operation and that the d-q cross-coupling affects the VOC-based systems in transients.
Neverthdess, all control strategies analyzed in this Chapter meet the IEEE Std 519-1992
recommendation.



Chapter 7

7.Conclusions and Future Prospects

7.1 Summary

The frame of this thesisis the trend toward transformerless MV connection of power converters. This
isthe case of alarge number of new active systems, such as wind turbines, hydraulic generators, biomass
and geothermal generators, photovoltaic systems, FACTS devices and others. New developments in
semiconductors allow an increase of their maximum voltage, current and switching frequency, in such a
way that it is possible to design efficient and reliable VSIs for MV applications. Among these designs, the
three-phase two-level VS| (2L-VSI) and three-level NPC VSl (3L-NPC VSI) configurations are mainly
employed and therefore, this dissertation deals with the improvement of control of these devices. Firgt the
basic operation principles and several mathematical models of the VSl have been presented including
some design considerations and establishing the main specifications and features of a grid-connected 2L -
VSl and 3L-NPC VS| under 2.3kV-2MVA operation conditions.

Generally, these devices must provide a target active and/or reactive power level to the line, so
appropriate Power Control systems are required. A classification of commonly employed control methods
has been carried out, classifying them within two control groups; the indirect and direct power control
techniques. Among the available indirect control strategies, the VOC is mainly utilized, so it has been
retained in order to be considered in this dissertation. On the other hand, the direct control type DPC
strategy shows attractive features related to fast transent behavior, employing active and reactive power
tracking requirements. Hence, both control methods have been evaluated, developing a new control
approach called Predictive Direct Power Control (P-DPC). Thisnew control algorithm combines the DPC
characteristics with a predictive selection of a voltage-vectors sequence, obtaining both high transient
dynamic and constant switching frequency. Different P-DPC versions have been proposed, involving the
P-DPC based on an optima application of two, three, symmetrical 2+2 and symmetrical 3+3 voltage
vectors sequences. In order to evaluate these control strategies several simulations of a grid-connected
2L-VSl and 3L-NPC VSl under a2.3kV-2MVA operation performance have been carried out.

These first study and simulations have lead to the selection of the best behaved control strategies for
MV grid-connection. This way, a performance comparison between the VOC techniques (with MLV-
PWM and NTV-SVM strategies for the 2L-VSl and 3L-NPC VSls respectively) and P-DPC agorithms
(based on a symmetrical 3+3 voltage vectors segquence) has been developed. This analysis has taken into
account different situations including power reference steps, drifts of filter’s inductance values and the
influence of usual power system’s disturbances.

Finally, several experimental tests of the 2L and 3L-NPC VSIs under P-DPC have validated the
proposed approach.
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7.2. General Conclusions

This research work proposes the Predictive Direct Power Control (P-DPC), a new control approach
where the well-known direct power control is combined with a predictive selection of a voltage-vectors
sequence, obtaining both high transient dynamic and congtant switching frequency.

Thefirgt part of the dissertation, devoted to the analysis and design of MV converters, has shown that
the 2L-V S| requires an extremely large inductor in order to fulfill the IEEE 519-1992 standard, leading to
a high voltage drop in the filter and increasing the DC-link voltage requirements. Therefore, the 2L-VS
with L-type filter is not a useful MV converter topology if efficiency and low THD are required.
Nevertheess, the 3L-NPC VSl requires smaller inductor’s values (below 50% related to 2L-V Sl-based
design when similar power quality conditions are assumed), becoming a very interesting option for MV
grid-connected applications.

One of the results of the analysis of the state-of-the-art of different modulation techniques is that the
SV-PWM (with four voltage vectors per control period) shows the best power quality and the minimum
DC-voltage ripple. The MLV-PWM, with three voltage vectors per control period, reduces the power
losses significantly, which is particularly interesting for MV and high power applications. However, the
improvement in power losses is related to current-spectrum and DC-link voltage deterioration. The 3L-
NPC VSl with NTV-SVM also uses three voltage vectors per control period, but the power qudity is
better thanks to the multiplicity of voltage levels and the overall efficiency is optimized. Yet, its basic
configuration suffers for the typical 150Hz perturbation in the capacitors’ DC-voltages.

Comparing the state-of-the-art of VOC and DPC dtrategies, the best power quality and the smallest
reference tracking error are assured by the VOC approaches. On the other hand, the DPC approach offers
the fastest transients without overshoot and avoiding any cross-coupling.

Concerning the proposed P-DPC, the symmetrical 3+3 vectors' sequence leads to the best results for
both the 2L and 3L-NPC VS configurations. Nevertheless, only the 3L-NPC VS| meets the IEEE Std
519-1992 recommendation.

The performance comparison between the state-of-the-art of VOC techniques and the new P-DPC
approach shows that the last oneisan attractive option for grid-connected converters. Thanksto its direct-
control structure it shows the best transient behavior, but, contrary to classical DPC approaches, the
predictive strategy assures constant switching-frequency, which leads to the same power quality levels as
the VOC type approaches. However, this agorithm is more sensitive against any drift on the value of the
filter’s inductance. These drifts do not damage the system’s stability but they affect the current tracking
error, especially on the case of the 3L-NPC VSl. In a similar way, the analysis of the influence of line-
voltage harmonics shows that the P-DPC is more sensitive than the VOC-based strategies. In addition,
this new approach is very sensitive to the voltage sags. The VOC techniques are also affected by these
perturbations and especially in the 3L-NPC VS configuration when unbalanced operation conditions are
produced.

The experimenta tests show very good results under different operation conditions, both in steady-
state and in transients. The comparison between VOC-based strategies and the proposed approaches
establishes that the P-DPC is several times faster in active-power reference transients and at the same
timeit does not deteriorate the steady-state harmonic spectrum.
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In the author’s opinion the thesis formulated in Chapter 1 has been proved. The proposed P-DPC
algorithm could become an interesting alternative to standard VOC techniques for MV grid-connected
converters.

7.3. Future Prospects

Important P-DPC improvements are possible. This is the case of the hybrid P-DPC a gorithm which
has been introduced in Chapter 4 and developed in Chapter 6. This P-DPC version uses a large set of
concatenated-voltage vectors in steady state operation, improving the efficiency and current ripple, but at
the same time it expl oits the advantages of a simple set of two concatenated-voltage vectors in transients.
Following thistrend, new P-DPC versions combining different control strategies could be devel oped.

As shown in Chapter 5, the P-DPC is based on the knowledge of the system’s model and therefore, it
is sengitive to parameter drifts. A typical deviation in the filter’ s-inductance produces only small errors,
so it will not damage the stability of the system. Anyway, the resulting non-expected error could be
utilized in an on-line parameter’ s-estimation system, leading to an adaptive version of the P-DPC. In a
similar way, this control approach shows a substantial senstivity to line voltage harmonics and sags, so
the addition of a PLL will probably solve most of the problems arising from these situations.

Finally, the extension of the P-DPC theory to other VSl-based systems using LC or LCL grid filters
could be explored. In these cases, original predictive models of instantaneous power could be devel oped,
establishing the new geometrical behaviors of active and reactive-power trajectories. This way, it is
possible to reduce the switching frequency and increase the converter’s power, becoming an attractive
solution from the point of view of MV grid-connected applications.






A. Appendices

A.1 Coordinate Transformations

This research work employs the following Park’s transformations to a rotating dgo reference frame
and Clark’ stransformationsto a static a0 reference frame.

Clark’ s direct abc/o50 and inverse a0/abc transformations:
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0 o

Fig.A.1: Relation between the Park’s and Clack’ sreferenceframes

A.2 Harmonic Limits

|EEE 519-1992

It defines the limits for harmonic voltages and currents at the Point of Common Coupling (PCC)

TABLEA.1
VOLTAGE DISTORTION LIMITS
Voltage at PCC Individual voltage distortion | Total voltage distortion
[%] THD

< 69kV 3.0 5.0
69kV — 138kV 15 25
>138kV 1.0 15

TABLEA.2

MAXIMUM ODD HARMONIC CURRENT DISTORTION LIMITSIN PERCENT OF IL FOR GENERAL DISTRIBUTION
SYSTEMS (120V-69kV)

lscllL <11 11<h<17 | 17<h<23 | 23<h<35 35<h TDD
<20 40 2.0 15 0.6 0.3 5.0
20<50 7.0 35 25 1.0 05 8.0
50<100 10.0 45 4.0 15 0.7 12.0
100<1000 12.0 55 50 20 1.0 15.0
>1000 15.0 7.0 6.0 25 14 20.0
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Here:

h isthe harmonic order

| sc isthe maximum short circuit current at the PCC

I represents the fundamenta current of the average (over 12 months) maximum monthly demand

load current at PCC

TDD isthetotal demand distortion, harmonic current distortion as % of the maximum demand |oad

current (15 or 30 minute demand)

|EC 61000-3-2

It refersto small customer equipment (public, low-voltage and househol d)

TABLEA.3

HARMONIC LIMITSFOR LV -CLASSD EQUIPMENT

Harmonic order (h) Maximum permissible Maximum permissible
harmonic current per watt harmonic current
(mA/W)

3 24 2.3

5 19 114

7 1.0 0.77

9 0.5 0.40

11 0.35 0.33

13<h< 39 3.85/h Refer to class A

(only odd harmonics)

|EC 61000-3-4

It refersto larger customer equipment (single and three-phase harmonic limits)

TABLEA.4

LIMITS FOR THREE-PHASE EQUIPMENT CONSIDERING THE SHORT CIRCUIT RATIO RSCC

Minimal Rscc Upper limitsfor har monic distortion Limitsfor individual harmonic
factors in %
of 11
THD PWHD Is I l11 l13
66 17 22 12 10 9 6
120 18 29 15 12 12 8
175 25 33 20 14 12 8
250 35 39 30 18 13 8
350 48 46 40 25 15 10
400 58 51 50 35 20 15
>600 70 57 60 40 25 18
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